BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 12370781)

  • 41. Stratifying melanoma and breast cancer TCGA datasets on the basis of the CNV of transcription factor binding sites common to proliferation- and apoptosis-effector genes.
    Mauro JA; Yavorski JM; Blanck G
    Gene; 2017 May; 614():37-48. PubMed ID: 28257835
    [TBL] [Abstract][Full Text] [Related]  

  • 42. TRANSFAC database as a bridge between sequence data libraries and biological function.
    Wingender E; Karas H; Knüppel R
    Pac Symp Biocomput; 1997; ():477-85. PubMed ID: 9390316
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exploring conservation of transcription factor binding sites with CONREAL.
    Berezikov E; Guryev V; Cuppen E
    Methods Mol Biol; 2007; 395():437-48. PubMed ID: 17993690
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An integrative analysis of TFBS-clustered regions reveals new transcriptional regulation models on the accessible chromatin landscape.
    Chen H; Li H; Liu F; Zheng X; Wang S; Bo X; Shu W
    Sci Rep; 2015 Feb; 5():8465. PubMed ID: 25682954
    [TBL] [Abstract][Full Text] [Related]  

  • 45. TEMPLE: analysing population genetic variation at transcription factor binding sites.
    Litovchenko M; Laurent S
    Mol Ecol Resour; 2016 Nov; 16(6):1428-1434. PubMed ID: 27106869
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Discovering approximate-associated sequence patterns for protein-DNA interactions.
    Chan TM; Wong KC; Lee KH; Wong MH; Lau CK; Tsui SK; Leung KS
    Bioinformatics; 2011 Feb; 27(4):471-8. PubMed ID: 21193520
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of computer tools for the prediction of transcription factor binding sites on genomic DNA.
    Roulet E; Fisch I; Junier T; Bucher P; Mermod N
    In Silico Biol; 1998; 1(1):21-8. PubMed ID: 11471239
    [No Abstract]   [Full Text] [Related]  

  • 48. Bioinformatical and experimental approaches to investigation of transcription factor binding sites in vertebrate genes.
    Merkulova TI; Oshchepkov DY; Ignatieva EV; Ananko EA; Levitsky VG; Vasiliev GV; Klimova NV; Merkulov VM; Kolchanov NA
    Biochemistry (Mosc); 2007 Nov; 72(11):1187-93. PubMed ID: 18205600
    [TBL] [Abstract][Full Text] [Related]  

  • 49. TFBS: Computational framework for transcription factor binding site analysis.
    Lenhard B; Wasserman WW
    Bioinformatics; 2002 Aug; 18(8):1135-6. PubMed ID: 12176838
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exploiting ancestral mammalian genomes for the prediction of human transcription factor binding sites.
    Blanchette M
    BMC Bioinformatics; 2012; 13 Suppl 19(Suppl 19):S2. PubMed ID: 23281809
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of positional dependence and alignment strategy on modeling transcription factor binding sites.
    Quader S; Huang CH
    BMC Res Notes; 2012 Jul; 5():340. PubMed ID: 22748199
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An information transmission model for transcription factor binding at regulatory DNA sites.
    Tan M; Yu D; Jin Y; Dou L; Li B; Wang Y; Yue J; Liang L
    Theor Biol Med Model; 2012 Jun; 9():19. PubMed ID: 22672438
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting transcription factor synergism.
    Hannenhalli S; Levy S
    Nucleic Acids Res; 2002 Oct; 30(19):4278-84. PubMed ID: 12364607
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome-wide prediction, display and refinement of binding sites with information theory-based models.
    Gadiraju S; Vyhlidal CA; Leeder JS; Rogan PK
    BMC Bioinformatics; 2003 Sep; 4():38. PubMed ID: 12962546
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modeling transcription factor binding sites with Gibbs Sampling and Minimum Description Length encoding.
    Schug J; Overton GC
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():268-71. PubMed ID: 9322048
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conserved and species-specific transcription factor co-binding patterns drive divergent gene regulation in human and mouse.
    Diehl AG; Boyle AP
    Nucleic Acids Res; 2018 Feb; 46(4):1878-1894. PubMed ID: 29361190
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exploring spatially adjacent TFBS-clustered regions with Hi-C data.
    Chen H; Jiang S; Zhang Z; Li H; Lu Y; Bo X
    Bioinformatics; 2017 Sep; 33(17):2611-2614. PubMed ID: 28472433
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A clustering property of highly-degenerate transcription factor binding sites in the mammalian genome.
    Zhang C; Xuan Z; Otto S; Hover JR; McCorkle SR; Mandel G; Zhang MQ
    Nucleic Acids Res; 2006; 34(8):2238-46. PubMed ID: 16670430
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative analysis of MTF-1 binding sites between human and mouse.
    Wang M; Yang F; Zhang X; Zhao H; Wang Q; Pan Y
    Mamm Genome; 2010 Jun; 21(5-6):287-98. PubMed ID: 20383712
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gain of transcription factor binding sites is associated to changes in the expression signature of human brain and testis and is correlated to genes with higher expression breadth.
    da Silva VL; Dos Santos AMR; Blanco W; de Souza SJ
    Sci China Life Sci; 2019 Apr; 62(4):526-534. PubMed ID: 30919278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.