These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 12370781)

  • 81. Jaccard index based similarity measure to compare transcription factor binding site models.
    Vorontsov IE; Kulakovskiy IV; Makeev VJ
    Algorithms Mol Biol; 2013 Sep; 8(1):23. PubMed ID: 24074225
    [TBL] [Abstract][Full Text] [Related]  

  • 82. PROMO: detection of known transcription regulatory elements using species-tailored searches.
    Messeguer X; Escudero R; Farré D; Núñez O; Martínez J; Albà MM
    Bioinformatics; 2002 Feb; 18(2):333-4. PubMed ID: 11847087
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Intronic regions of the
    Haddad-Mashadrizeh A; Hemmat J; Aslamkhan M
    Heliyon; 2020 Sep; 6(9):e04727. PubMed ID: 32944665
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Improvement of TRANSFAC matrices using multiple local alignment of transcription factor binding site sequences.
    Fu Y; Weng Z
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():2856-9. PubMed ID: 17270873
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Sequence-based prediction of putative transcription factor binding sites in DNA sequences of any length.
    Lee W; Park B; Han K
    IEEE/ACM Trans Comput Biol Bioinform; 2017 Nov; ():. PubMed ID: 29990126
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A non-parametric model for transcription factor binding sites.
    King OD; Roth FP
    Nucleic Acids Res; 2003 Oct; 31(19):e116. PubMed ID: 14500844
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Measuring transcription factor-binding site turnover: a maximum likelihood approach using phylogenies.
    Otto W; Stadler PF; López-Giraldéz F; Townsend JP; Lynch VJ; Wagner GP
    Genome Biol Evol; 2009 May; 1():85-98. PubMed ID: 20333180
    [TBL] [Abstract][Full Text] [Related]  

  • 88. An efficient method for statistical significance calculation of transcription factor binding sites.
    Qian Z; Lu L; Qi L; Li Y
    Bioinformation; 2007 Dec; 2(5):169-74. PubMed ID: 18305824
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Position-specific evolution in transcription factor binding sites, and a fast likelihood calculation for the F81 model.
    Selvakumar P; Siddharthan R
    R Soc Open Sci; 2024 Jan; 11(1):231088. PubMed ID: 38269075
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A Soviet human genome program?
    Science; 1988 Apr; 240(4849):140. PubMed ID: 3353712
    [No Abstract]   [Full Text] [Related]  

  • 91. Correction: Nikitin, D., et al. Retroelement-Linked Transcription Factor Binding Patterns Point to Quickly Developing Molecular Pathways in Human Evolution.
    Nikitin D; Garazha A; Sorokin M; Penzar D; Tkachev V; Markov A; Gaifullin N; Borger P; Poltorak A; Buzdin A
    Cells; 2019 Aug; 8(8):. PubMed ID: 31387291
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Genome-wide association and functional interrogation identified a variant at 3p26.1 modulating ovarian cancer survival among Chinese women.
    Dai H; Chu X; Liang Q; Wang M; Li L; Zhou Y; Zheng Z; Wang W; Wang Z; Li H; Wang J; Zheng H; Zhao Y; Liu L; Yao H; Luo M; Wang Q; Kang S; Li Y; Wang K; Song F; Zhang R; Wu X; Cheng X; Zhang W; Wei Q; Li MJ; Chen K
    Cell Discov; 2021 Dec; 7(1):121. PubMed ID: 34930913
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Repair of APOBEC3G-Mutated Retroviral DNA
    Salas-Briceno K; Ross SR
    J Virol; 2021 Oct; 95(22):e0124421. PubMed ID: 34468176
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A transcription-centric model of SNP-age interaction.
    Wang K; Basu M; Malin J; Hannenhalli S
    PLoS Genet; 2021 Mar; 17(3):e1009427. PubMed ID: 33770080
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Evidence of widespread, independent sequence signature for transcription factor cobinding.
    Zhou M; Li H; Wang X; Guan Y
    Genome Res; 2021 Feb; 31(2):265-278. PubMed ID: 33303494
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Learning and interpreting the gene regulatory grammar in a deep learning framework.
    Chen L; Capra JA
    PLoS Comput Biol; 2020 Nov; 16(11):e1008334. PubMed ID: 33137083
    [TBL] [Abstract][Full Text] [Related]  

  • 97. NFATc2 enhances tumor-initiating phenotypes through the NFATc2/SOX2/ALDH axis in lung adenocarcinoma.
    Xiao ZJ; Liu J; Wang SQ; Zhu Y; Gao XY; Tin VP; Qin J; Wang JW; Wong MP
    Elife; 2017 Jul; 6():. PubMed ID: 28737489
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A New Algorithm for Identifying Cis-Regulatory Modules Based on Hidden Markov Model.
    Guo H; Huo H
    Biomed Res Int; 2017; 2017():6274513. PubMed ID: 28497059
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Distal CpG islands can serve as alternative promoters to transcribe genes with silenced proximal promoters.
    Sarda S; Das A; Vinson C; Hannenhalli S
    Genome Res; 2017 Apr; 27(4):553-566. PubMed ID: 28223400
    [TBL] [Abstract][Full Text] [Related]  

  • 100. DLX1 acts as a crucial target of FOXM1 to promote ovarian cancer aggressiveness by enhancing TGF-β/SMAD4 signaling.
    Chan DW; Hui WW; Wang JJ; Yung MM; Hui LM; Qin Y; Liang RR; Leung TH; Xu D; Chan KK; Yao KM; Tsang BK; Ngan HY
    Oncogene; 2017 Mar; 36(10):1404-1416. PubMed ID: 27593933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.