These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12371158)

  • 1. Optical properties of intact leaves for estimating chlorophyll concentration.
    Carter GA; Spiering BA
    J Environ Qual; 2002; 31(5):1424-32. PubMed ID: 12371158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery.
    Zarco-Tejada PJ; Miller JR; Mohammed GH; Noland TL; Sampson PH
    J Environ Qual; 2002; 31(5):1433-41. PubMed ID: 12371159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance.
    Campbell PK; Middleton EM; Corp LA; Kim MS
    Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Narrow-waveband reflectance ratios for remote estimation of nitrogen status in cotton.
    Read JJ; Tarpley L; McKinion JM; Reddy KR
    J Environ Qual; 2002; 31(5):1442-52. PubMed ID: 12371160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves.
    Gitelson AA; Gritz Y; Merzlyak MN
    J Plant Physiol; 2003 Mar; 160(3):271-82. PubMed ID: 12749084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An extended PROSPECT: Advance in the leaf optical properties model separating total chlorophylls into chlorophyll a and b.
    Zhang Y; Huang J; Wang F; Blackburn GA; Zhang HK; Wang X; Wei C; Zhang K; Wei C
    Sci Rep; 2017 Jul; 7(1):6429. PubMed ID: 28743986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration.
    Carter GA; Knapp AK
    Am J Bot; 2001 Apr; 88(4):677-84. PubMed ID: 11302854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorophyll content retrieval from hyperspectral remote sensing imagery.
    Yang X; Yu Y; Fan W
    Environ Monit Assess; 2015 Jul; 187(7):456. PubMed ID: 26095901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of chlorophyll content based on optical properties of maize leaves.
    Pan W; Cheng X; Du R; Zhu X; Guo W
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 309():123843. PubMed ID: 38215563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves.
    Junker LV; Ensminger I
    Tree Physiol; 2016 Jun; 36(6):694-711. PubMed ID: 26928514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra.
    Maccioni A; Agati G; Mazzinghi P
    J Photochem Photobiol B; 2001 Aug; 61(1-2):52-61. PubMed ID: 11485848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Estimations of chlorophyll and water contents in live leaf of winter wheat with reflectance spectroscopy].
    Ji HY; Wang PX; Yan TL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Mar; 27(3):514-6. PubMed ID: 17554911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of accumulating fluorine and sulphur compounds on the content of chlorophyll in pine needles (Pinus sylvestris L.) from some areas of southern Poland in 2001-2003].
    Kusa Z; Sochacka J; Wardas W; Pawłowska-Góral K
    Ann Acad Med Stetin; 2004; 50 Suppl 1():69-72. PubMed ID: 16892589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Monitoring of wheat leaf pigment concentration with hyper-spectral remote sensing].
    Feng W; Zhu Y; Yao X; Tian YC; Yao XF; Cao WX
    Ying Yong Sheng Tai Xue Bao; 2008 May; 19(5):992-9. PubMed ID: 18655583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study on relationships between total chlorophyll with hyperspectral features for leaves of Pinus massoniana forest].
    Du HQ; Ge HL; Fan WY; Jin W; Zhou YF; Li J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):3033-7. PubMed ID: 20101980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperspectral leaf reflectance of Carpinus betulus L. saplings for urban air quality estimation.
    Brackx M; Van Wittenberghe S; Verhelst J; Scheunders P; Samson R
    Environ Pollut; 2017 Jan; 220(Pt A):159-167. PubMed ID: 27720547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Reflectance Measurements Acquired with a Contact Probe and an Integration Sphere: Implications for the Spectral Properties of Vegetation at a Leaf Level.
    Potůčková M; Červená L; Kupková L; Lhotáková Z; Lukeš P; Hanuš J; Novotný J; Albrechtová J
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics.
    Xiong D; Chen J; Yu T; Gao W; Ling X; Li Y; Peng S; Huang J
    Sci Rep; 2015 Aug; 5():13389. PubMed ID: 26303807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Relationship between simulated acid rain stress and leaf reflectance].
    Song XD; Jiang H; Yu SQ; Zhou GM; Jiang ZS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jan; 30(1):165-9. PubMed ID: 20302106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of elevated atmospheric CO(2) and temperature on leaf optical properties in Acer saccharum.
    Carter GA; Bahadur R; Norby RJ
    Environ Exp Bot; 2000 Jun; 43(3):267-273. PubMed ID: 10725525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.