BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12371173)

  • 21. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis).
    Lai HY; Chen ZS
    Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant Induced Changes to Rhizosphere Characteristics Affecting Supply of Cd to Noccaea caerulescens and Ni to Thlaspi goesingense.
    Luo J; Yin D; Cheng H; Davison W; Zhang H
    Environ Sci Technol; 2018 May; 52(9):5085-5093. PubMed ID: 29617561
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil.
    Meers E; Lesage E; Lamsal S; Hopgood M; Vervaeke P; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):129-42. PubMed ID: 16128444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.
    Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H
    J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hyperaccumulation of Zn by Thlaspi caerulescens can ameliorate Zn toxicity in the rhizosphere of cocropped Thlaspi arvense.
    Whiting SN; Leake JR; McGrath SP; Baker AJ
    Environ Sci Technol; 2001 Aug; 35(15):3237-41. PubMed ID: 11506012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced phytoextraction: in search of EDTA alternatives.
    Meers E; Hopgood M; Lesage E; Vervaeke P; Tack FM; Verloo MG
    Int J Phytoremediation; 2004; 6(2):95-109. PubMed ID: 15328977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations.
    Delorme TA; Gagliardi JV; Angle JS; Chaney RL
    Can J Microbiol; 2001 Aug; 47(8):773-6. PubMed ID: 11575505
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of various extractants in removing group-IIB elements of soils incubated with EDTA.
    Karak T; Singh UK; Das DK
    ScientificWorldJournal; 2004 Dec; 4():1038-45. PubMed ID: 15632982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil.
    Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels.
    Vandecasteele B; Meers E; Vervaeke P; De Vos B; Quataert P; Tack FM
    Chemosphere; 2005 Feb; 58(8):995-1002. PubMed ID: 15664607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils.
    Wang Z; Shan XQ; Zhang S
    Chemosphere; 2002 Mar; 46(8):1163-71. PubMed ID: 11951982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals.
    Schmidt U
    J Environ Qual; 2003; 32(6):1939-54. PubMed ID: 14674516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments.
    Pilipović A; Zalesny RS; Rončević S; Nikolić N; Orlović S; Beljin J; Katanić M
    J Environ Manage; 2019 Jun; 239():352-365. PubMed ID: 30921754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cadmium leaching from micro-lysimeters planted with the hyperaccumulator Thlaspi caerulescens: experimental findings and modeling.
    Ingwersen J; Bücherl B; Neumann G; Streck T
    J Environ Qual; 2006; 35(6):2055-65. PubMed ID: 17071874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complexation of DTPA and EDTA with Cd
    Karak T; Paul RK; Das DK; Boruah RK
    Environ Monit Assess; 2016 Dec; 188(12):670. PubMed ID: 27848112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microwave extraction of heavy metals from wet rhizosphere soils and its application to evaluation of bioavailability.
    Zhang S; Lu A; Shan XQ; Wang Z; Wang S
    Anal Bioanal Chem; 2002 Nov; 374(5):942-7. PubMed ID: 12434253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability.
    Kuffner M; De Maria S; Puschenreiter M; Fallmann K; Wieshammer G; Gorfer M; Strauss J; Rivelli AR; Sessitsch A
    J Appl Microbiol; 2010 Apr; 108(4):1471-84. PubMed ID: 20132372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil.
    Gupta AK; Sinha S
    J Hazard Mater; 2007 Oct; 149(1):144-50. PubMed ID: 17475401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plant response to heavy metal toxicity: comparative study between the hyperaccumulator Thlaspi caerulescens (ecotype Ganges) and nonaccumulator plants: lettuce, radish, and alfalfa.
    Benzarti S; Mohri S; Ono Y
    Environ Toxicol; 2008 Oct; 23(5):607-16. PubMed ID: 18528911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Testing of outstanding individuals of Thlaspi caerulescens for cadmium phytoextraction.
    Schwartz C; Sirguey C; Peronny S; Reeves RD; Bourgaud F; Morel JL
    Int J Phytoremediation; 2006; 8(4):339-57. PubMed ID: 17305307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.