These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 12371494)
1. A combined microcosm and field approach to evaluate the aquatic toxicity of azinphosmethyl to stream communities. Schulz R; Thiere G; Dabrowski JM Environ Toxicol Chem; 2002 Oct; 21(10):2172-8. PubMed ID: 12371494 [TBL] [Abstract][Full Text] [Related]
2. Runoff simulation with particle-associated azinphosmethyl in multispecies stream microcosms: implications for the field. Thiere G; Schulz R Environ Toxicol Chem; 2004 Aug; 23(8):1984-90. PubMed ID: 15352488 [TBL] [Abstract][Full Text] [Related]
3. Seasonal changes of macroinvertebrate communities in a Western cape river, South Africa, receiving nonpoint-source insecticide pollution. Bollmohr S; Schulz R Environ Toxicol Chem; 2009 Apr; 28(4):809-17. PubMed ID: 19391685 [TBL] [Abstract][Full Text] [Related]
4. Runoff-related agricultural impact in relation to macroinvertebrate communities of the Lourens River, South Africa. Thiere G; Schulz R Water Res; 2004 Jul; 38(13):3092-102. PubMed ID: 15261548 [TBL] [Abstract][Full Text] [Related]
5. Comparison of spray drift- and runoff-related input of azinphos-methyl and endosulfan from fruit orchards into the Lourens River, South Africa. Schulz R Chemosphere; 2001 Nov; 45(4-5):543-51. PubMed ID: 11680750 [TBL] [Abstract][Full Text] [Related]
6. Predicted and measured levels of azinphosmethyl in the Lourens River, South Africa: comparison of runoff and spray drift. Dabrowski JM; Schulz R Environ Toxicol Chem; 2003 Mar; 22(3):494-500. PubMed ID: 12627634 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of rainbow trout acetylcholinesterase by aqueous and suspended particle-associated organophosphorous insecticides. Sturm A; Radau TS; Hahn T; Schulz R Chemosphere; 2007 Jun; 68(4):605-12. PubMed ID: 17418885 [TBL] [Abstract][Full Text] [Related]
8. Fate and effects of azinphos-methyl in a flow through wetland in South Africa. Schulz R; Hahn C; Bennett ER; Dabrowski JM; Thiere G; Peall SK Environ Sci Technol; 2003 May; 37(10):2139-44. PubMed ID: 12785519 [TBL] [Abstract][Full Text] [Related]
9. Combined effects of predatory fish and sublethal pesticide contamination on the behavior and mortality of mayfly nymphs. Schulz R; Dabrowski JM Environ Toxicol Chem; 2001 Nov; 20(11):2537-43. PubMed ID: 11699780 [TBL] [Abstract][Full Text] [Related]
10. Fate and effects of the insecticide-miticide chlorfenapyr in outdoor aquatic microcosms. Rand GM Ecotoxicol Environ Saf; 2004 May; 58(1):50-60. PubMed ID: 15087163 [TBL] [Abstract][Full Text] [Related]
11. Spray deposition of two insecticides into surface waters in a South African orchard area. Schulz R; Peall SK; Dabrowski JM; Reinecke AJ J Environ Qual; 2001; 30(3):814-22. PubMed ID: 11401270 [TBL] [Abstract][Full Text] [Related]
12. Rainfall-induced sediment and pesticide input from orchards into the Lourens River, Western Cape, South Africa: importance of a single event. Schulz R Water Res; 2001 Jun; 35(8):1869-76. PubMed ID: 11337831 [TBL] [Abstract][Full Text] [Related]
13. The impact of organophosphate pesticides in orchards on earthworms in the Western Cape, South Africa. Reinecke SA; Reinecke AJ Ecotoxicol Environ Saf; 2007 Feb; 66(2):244-51. PubMed ID: 16318873 [TBL] [Abstract][Full Text] [Related]
14. Mitigation of azinphos-methyl in a vegetated stream: comparison of runoff- and spray-drift. Dabrowski JM; Bennett ER; Bollen A; Schulz R Chemosphere; 2006 Jan; 62(2):204-12. PubMed ID: 16002124 [TBL] [Abstract][Full Text] [Related]
15. Using a freshwater amphipod in situ bioassay as a sensitive tool to detect pesticide effects in the field. Schulz R Environ Toxicol Chem; 2003 May; 22(5):1172-6. PubMed ID: 12729231 [TBL] [Abstract][Full Text] [Related]
16. Responses of aquatic insects to Cu and Zn in stream microcosms: understanding differences between single species tests and field responses. Clements WH; Cadmus P; Brinkman SF Environ Sci Technol; 2013 Jul; 47(13):7506-13. PubMed ID: 23734565 [TBL] [Abstract][Full Text] [Related]
17. Risks to aquatic organisms from use of chlorpyrifos in the United States. Giddings JM; Williams WM; Solomon KR; Giesy JP Rev Environ Contam Toxicol; 2014; 231():119-62. PubMed ID: 24723135 [TBL] [Abstract][Full Text] [Related]
18. Behavioural changes in three species of freshwater macroinvertebrates exposed to the pyrethroid lambda-cyhalothrin: laboratory and stream microcosm studies. Nørum U; Friberg N; Jensen MR; Pedersen JM; Bjerregaard P Aquat Toxicol; 2010 Jul; 98(4):328-35. PubMed ID: 20362345 [TBL] [Abstract][Full Text] [Related]
19. Comparative study of toxicity and biochemical responses induced by sublethal levels of the pesticide azinphosmethyl in two fish species from North-Patagonia, Argentina. Guerreño M; López Armengol MF; Luquet CM; Venturino A Aquat Toxicol; 2016 Aug; 177():365-72. PubMed ID: 27376960 [TBL] [Abstract][Full Text] [Related]
20. Effects of time-variable exposure regimes of the insecticide chlorpyrifos on freshwater invertebrate communities in microcosms. Zafar MI; Van Wijngaarden RP; Roessink I; Van den Brink PJ Environ Toxicol Chem; 2011 Jun; 30(6):1383-94. PubMed ID: 21351295 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]