These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 12371546)

  • 1. Comparative study with double-exposure digital holographic interferometry and a shack-hartmann sensor to characterize transparent materials.
    Owen RB; Zozulya AA
    Appl Opt; 2002 Oct; 41(28):5891-5. PubMed ID: 12371546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digital off-axis holographic interferometry with simulated wavefront.
    Belashov AV; Petrov NV; Semenova IV
    Opt Express; 2014 Nov; 22(23):28363-76. PubMed ID: 25402078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid-crystal Hartmann wave-front scanner.
    Olivier S; Laude V; Huignard JP
    Appl Opt; 2000 Aug; 39(22):3838-46. PubMed ID: 18349960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wave-front sensing from subdivision of the focal plane with a lenslet array.
    Clare RM; Lane RG
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jan; 22(1):117-25. PubMed ID: 15669622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorting method to extend the dynamic range of the Shack-Hartmann wave-front sensor.
    Lee J; Shack RV; Descour MR
    Appl Opt; 2005 Aug; 44(23):4838-45. PubMed ID: 16114520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundamental performance of transverse wind estimator from Shack-Hartmann wave-front sensor measurements.
    Li Z; Li X
    Opt Express; 2018 Apr; 26(9):11859-11876. PubMed ID: 29716103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Misalignment effects of the Shack-Hartmann sensor.
    Pfund J; Lindlein N; Schwider J
    Appl Opt; 1998 Jan; 37(1):22-7. PubMed ID: 18268555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of an automated refractor using a Hartmann-Shack sensor after corneal refractive surgery and cataract surgery.
    Park JH; Kim MJ; Park JH; Song IS; Kim JY; Tchah H
    J Cataract Refract Surg; 2015 Sep; 41(9):1889-97. PubMed ID: 26603398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shack Hartmann wave-front measurement with a large F-number plastic microlens array.
    Yoon GY; Jitsuno T; Nakatsuka M; Nakai S
    Appl Opt; 1996 Jan; 35(1):188-92. PubMed ID: 21068997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microgravity materials and life sciences research applications of digital holography.
    Owen RB; Zozulya AA; Benoit MR; Klaus DM
    Appl Opt; 2002 Jul; 41(19):3927-35. PubMed ID: 12099602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of wave-front aberration in soft contact lenses by use of a Shack-Hartmann wave-front sensor.
    Jeong TM; Menon M; Yoon G
    Appl Opt; 2005 Jul; 44(21):4523-7. PubMed ID: 16047902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron density characterization by use of a broadband x-ray-compatible wave-front sensor.
    Baker KL; Brase J; Kartz M; Olivier SS; Sawvel B; Tucker J
    Opt Lett; 2003 Feb; 28(3):149-51. PubMed ID: 12656314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atmospheric structure function measurements with a Shack-Hartmann wave-front sensor.
    Dayton D; Pierson B; Spielbusch B; Gonglewski J
    Opt Lett; 1992 Dec; 17(24):1737-9. PubMed ID: 19798300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wave-front sensing by pseudo-phase-conjugate interferometry.
    Baharav Y; Spektor B; Shamir J; Crowe DG; Rhodes W; Stroud R
    Appl Opt; 1995 Jan; 34(1):108-13. PubMed ID: 20963089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave front sensor and zonal control algorithm.
    Dayton D; Sandven S; Gonglewski J; Browne S; Rogers S; McDermott S
    Opt Express; 1997 Nov; 1(11):338-46. PubMed ID: 19377554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental comparison of a Shack-Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications.
    Koch JA; Presta RW; Sacks RA; Zacharias RA; Bliss ES; Dailey MJ; Feldman M; Grey AA; Holdener FR; Salmon JT; Seppala LG; Toeppen JS; Van Atta L; Van Wonterghem BM; Whistler WT; Winters SE; Woods BW
    Appl Opt; 2000 Sep; 39(25):4540-6. PubMed ID: 18350042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time monitoring of the solution concentration variation during the crystallization process of protein-lysozyme by using digital holographic interferometry.
    Zhang Y; Zhao J; Di J; Jiang H; Wang Q; Wang J; Guo Y; Yin D
    Opt Express; 2012 Jul; 20(16):18415-21. PubMed ID: 23038392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a shack-hartmann wave-front sensor.
    Mansell JD; Hennawi J; Gustafson EK; Fejer MM; Byer RL; Clubley D; Yoshida S; Reitze DH
    Appl Opt; 2001 Jan; 40(3):366-74. PubMed ID: 18357010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent image synthesis from wave-front sensor measurements of a nonimaged laser speckle field: a laboratory demonstrations.
    Gonglewski JD; Idell PS; Voelz DG; Dayton DC; Spielbusch BK; Pierson RE
    Opt Lett; 1991 Dec; 16(23):1893-5. PubMed ID: 19784174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic range expansion of a Shack-Hartmann sensor by use of a modified unwrapping algorithm.
    Pfund J; Lindlein N; Schwider J
    Opt Lett; 1998 Jul; 23(13):995-7. PubMed ID: 18087407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.