BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12372002)

  • 1. Sauvagine regulates Ca2+ oscillations and electrical membrane activity of melanotrope cells of Xenopus laevis.
    Cornelisse LN; Deumens R; Coenen JJ; Roubos EW; Gielen CC; Ypey DL; Jenks BG; Scheenen WJ
    J Neuroendocrinol; 2002 Oct; 14(10):778-87. PubMed ID: 12372002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium oscillations in melanotrope cells of Xenopus laevis are differentially regulated by cAMP-dependent and cAMP-independent mechanisms.
    Lieste JR; Scheenen WJ; Willems PH; Jenks BG; Roubos EW
    Cell Calcium; 1996 Oct; 20(4):329-37. PubMed ID: 8939352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action of stimulatory and inhibitory alpha-MSH secretagogues on spontaneous calcium oscillations in melanotrope cells of Xenopus laevis.
    Scheenen WJ; Jenks BG; Willems PH; Roubos EW
    Pflugers Arch; 1994 Jun; 427(3-4):244-51. PubMed ID: 8072842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The extracellular calcium-sensing receptor increases the number of calcium steps and action currents in pituitary melanotrope cells.
    van den Hurk MJ; Jenks BG; Roubos EW; Scheenen WJ
    Neurosci Lett; 2005 Mar; 377(2):125-9. PubMed ID: 15740850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CRF-related peptide sauvagine stimulates and the GABAB receptor agonist baclofen inhibits cyclic-AMP production in melanotrope cells of Xenopus laevis.
    Jenks BG; van Zoest ID; de Koning HP; Leenders HJ; Roubos EW
    Life Sci; 1991; 48(17):1633-7. PubMed ID: 1850060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sauvagine and TRH differentially stimulate proopiomelanocortin biosynthesis in the Xenopus laevis intermediate pituitary.
    Dotman CH; Maia A; Jenks BG; Roubos EW
    Neuroendocrinology; 1997 Aug; 66(2):106-13. PubMed ID: 9263207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Action currents generate stepwise intracellular Ca2+ patterns in a neuroendocrine cell.
    Lieste JR; Koopman WJ; Reynen VC; Scheenen WJ; Jenks BG; Roubos EW
    J Biol Chem; 1998 Oct; 273(40):25686-94. PubMed ID: 9748236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuropeptide Y inhibits Ca2+ oscillations, cyclic AMP, and secretion in melanotrope cells of Xenopus laevis via a Y1 receptor.
    Scheenen WJ; Yntema HG; Willems PH; Roubos EW; Lieste JR; Jenks BG
    Peptides; 1995; 16(5):889-95. PubMed ID: 7479331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimal model for intracellular calcium oscillations and electrical bursting in melanotrope cells of Xenopus laevis.
    Cornelisse LN; Scheenen WJ; Koopman WJ; Roubos EW; Gielen SC
    Neural Comput; 2001 Jan; 13(1):113-37. PubMed ID: 11177430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melanotrope cells of Xenopus laevis express multiple types of high-voltage-activated Ca2+ channels.
    Zhang HY; Langeslag M; Voncken M; Roubos EW; Scheenen WJ
    J Neuroendocrinol; 2005 Jan; 17(1):1-9. PubMed ID: 15720469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of calcium steps underlying calcium oscillations in melanotrope cells of Xenopus laevis.
    Koopman WJ; Scheenen WJ; Roubos EW; Jenks BG
    Cell Calcium; 1997 Sep; 22(3):167-78. PubMed ID: 9330787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroendocrine gamma-aminobutyric acid (GABA): functional differences in GABAA versus GABAB receptor inhibition of the melanotrope cell of Xenopus laevis.
    Buzzi M; Bemelmans FF; Roubos EW; Jenks BG
    Endocrinology; 1997 Jan; 138(1):203-12. PubMed ID: 8977405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular calcium buffering shapes calcium oscillations in Xenopus melanotropes.
    Koopman WJ; Scheenen WJ; Schoolderman LF; Cruijsen PM; Roubos EW; Jenks BG
    Pflugers Arch; 2001 Nov; 443(2):250-6. PubMed ID: 11713651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of cyclic-AMP efflux in relation to alpha-MSH secretion from melanotrope cells of Xenopus laevis.
    de Koning HP; Jenks BG; Huchedé B; Roubos EW
    Life Sci; 1992; 51(21):1667-73. PubMed ID: 1279339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous calcium oscillations in Xenopus laevis melanotrope cells are mediated by omega-conotoxin sensitive calcium channels.
    Scheenen WJ; Jenks BG; Roubos EW; Willems PH
    Cell Calcium; 1994 Jan; 15(1):36-44. PubMed ID: 8149404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial and temporal aspects of Ca2+ oscillations in Xenopus laevis melanotrope cells.
    Scheenen WJ; Jenks BG; van Dinter RJ; Roubos EW
    Cell Calcium; 1996 Mar; 19(3):219-27. PubMed ID: 8732262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The secretion of alpha-MSH from xenopus melanotropes involves calcium influx through omega-conotoxin-sensitive voltage-operated calcium channels.
    Scheenen WJ; de Koning HP; Jenks BG; Vaudry H; Roubos EW
    J Neuroendocrinol; 1994 Aug; 6(4):457-64. PubMed ID: 7987377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium waves in frog melanotrophs are generated by intracellular inactivation of TTX-sensitive membrane Na+ channel.
    Galas L; Garnier M; Lamacz M
    Mol Cell Endocrinol; 2000 Dec; 170(1-2):197-209. PubMed ID: 11162903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estradiol-modified prolactin secretion independently of action potentials and Ca
    Sánchez M; Suárez L; Cantabrana B; Bordallo J
    Naunyn Schmiedebergs Arch Pharmacol; 2017 Jan; 390(1):95-104. PubMed ID: 27747371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of MSH release from the neurointermediate lobe of Xenopus laevis by CRF-like peptides.
    Verburg-Van Kemenade BM; Jenks BG; Cruijsen PM; Dings A; Tonon MC; Vaudry H
    Peptides; 1987; 8(6):1093-100. PubMed ID: 2831518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.