These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 12372315)

  • 1. X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth.
    Stock SR; Barss J; Dahl T; Veis A; Almer JD
    J Struct Biol; 2002 Jul; 139(1):1-12. PubMed ID: 12372315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens.
    de Jonge MD; Ryan CG; Jacobsen CJ
    J Synchrotron Radiat; 2014 Sep; 21(Pt 5):1031-47. PubMed ID: 25177992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the microstructures of mammalian enamel by synchrotron phase contrast microCT.
    Marsico C; Grimm JR; Renteria C; Guillen DP; Tang K; Nikitin V; Arola DD
    Acta Biomater; 2024 Apr; 178():208-220. PubMed ID: 38428512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging.
    Warren AJ; Armour W; Axford D; Basham M; Connolley T; Hall DR; Horrell S; McAuley KE; Mykhaylyk V; Wagner A; Evans G
    Acta Crystallogr D Biol Crystallogr; 2013 Jul; 69(Pt 7):1252-9. PubMed ID: 23793151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to make deposition of images a reality.
    Guss JM; McMahon B
    Acta Crystallogr D Biol Crystallogr; 2014 Oct; 70(Pt 10):2520-32. PubMed ID: 25286838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing the fibre texture of satin spar using laboratory 2D X-ray diffraction.
    Wang XT; Schrank C; Jones M
    J Appl Crystallogr; 2024 Apr; 57(Pt 2):240-247. PubMed ID: 38596728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remineralization effects of enamel binding peptide, WGNYAYK, on enamel subsurface demineralization
    Miyayoshi Y; Hamba H; Nakamura K; Ishizuka H; Muramatsu T
    Heliyon; 2024 Jan; 10(1):e23176. PubMed ID: 38148805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The unique biomineralization transcriptome and proteome of Lytechinus variegatus teeth.
    Alvares K; DeHart CJ; Thomas PM; Kelleher NL; Veis A
    Connect Tissue Res; 2018 Dec; 59(sup1):20-29. PubMed ID: 29745816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of second stage mineral in Lytechinus variegatus.
    Stock SR; Seto J; Deymier AC; Rack A; Veis A
    Connect Tissue Res; 2018 Jul; 59(4):345-355. PubMed ID: 29083939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcite orientations and composition ranges within teeth across Echinoidea.
    Stock SR; Ignatiev K; Lee PL; Almer JD
    Connect Tissue Res; 2014 Aug; 55 Suppl 1(0 1):48-52. PubMed ID: 25158180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sea urchins have teeth? A review of their microstructure, biomineralization, development and mechanical properties.
    Stock SR
    Connect Tissue Res; 2014; 55(1):41-51. PubMed ID: 24437604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sea urchin tooth mineralization: calcite present early in the aboral plumula.
    Stock SR; Veis A; Xiao X; Almer JD; Dorvee JR
    J Struct Biol; 2012 Nov; 180(2):280-9. PubMed ID: 22940703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic matrix-related mineralization of sea urchin spicules, spines, test and teeth.
    Veis A
    Front Biosci (Landmark Ed); 2011 Jun; 16(7):2540-60. PubMed ID: 21622194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the formation and functions of high and very high magnesium calcites in the continuously growing teeth of the echinoderm Lytechinus variegatus: development of crystallinity and protein involvement.
    Veis A; Stock SR; Alvares K; Lux E
    Cells Tissues Organs; 2011; 194(2-4):131-7. PubMed ID: 21555859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of two distinctly different mineral-related proteins from the teeth of the Camarodont sea urchin Lytechinus variegatus: Specificity of function with relation to mineralization.
    Veis A; Alvares K; Dixit SN; Robach JS; Stock SR
    Front Mater Sci China; 2009 Jun; 3(2):163-168. PubMed ID: 20865144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of first- and second-stage mineralized elements in teeth of the sea urchin Lytechinus variegatus.
    Robach JS; Stock SR; Veis A
    J Struct Biol; 2009 Dec; 168(3):452-66. PubMed ID: 19616101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution.
    Ma Y; Aichmayer B; Paris O; Fratzl P; Meibom A; Metzler RA; Politi Y; Addadi L; Gilbert PU; Weiner S
    Proc Natl Acad Sci U S A; 2009 Apr; 106(15):6048-53. PubMed ID: 19332795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D mapping of polymerization shrinkage using X-ray micro-computed tomography to predict microleakage.
    Sun J; Eidelman N; Lin-Gibson S
    Dent Mater; 2009 Mar; 25(3):314-20. PubMed ID: 18762335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of synchrotron-radiation-based computer microtomography (SRICT) to selected biominerals: embryonic snails, statoliths of medusae, and human teeth.
    Prymak O; Tiemann H; Sötje I; Marxen JC; Klocke A; Kahl-Nieke B; Beckmann F; Donath T; Epple M
    J Biol Inorg Chem; 2005 Oct; 10(6):688-95. PubMed ID: 16187072
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.