These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Trazodone and mirtazapine: A possible opioid involvement in their use (at low dose) for sleep? Schreiber S; Pick CG Med Hypotheses; 2020 Mar; 136():109501. PubMed ID: 31759303 [TBL] [Abstract][Full Text] [Related]
7. The atypical neuroleptics clozapine and olanzapine differ regarding their antinociceptive mechanisms and potency. Schreiber S; Getslev V; Backer MM; Weizman R; Pick CG Pharmacol Biochem Behav; 1999 Sep; 64(1):75-80. PubMed ID: 10495000 [TBL] [Abstract][Full Text] [Related]
8. The antinociceptive properties of reboxetine in acute pain. Schreiber S; Frishtick R; Volis I; Rubovitch V; Pick CG; Weizman R Eur Neuropsychopharmacol; 2009 Oct; 19(10):735-9. PubMed ID: 19577903 [TBL] [Abstract][Full Text] [Related]
9. The antinociceptive effect of zolpidem and zopiclone in mice. Pick CG; Chernes Y; Rigai T; Rice KC; Schreiber S Pharmacol Biochem Behav; 2005 Jul; 81(3):417-23. PubMed ID: 15913749 [TBL] [Abstract][Full Text] [Related]
10. Tramadol antinociception is potentiated by clonidine through α₂-adrenergic and I₂-imidazoline but not by endothelin ET(A) receptors in mice. Andurkar SV; Gendler L; Gulati A Eur J Pharmacol; 2012 May; 683(1-3):109-15. PubMed ID: 22449379 [TBL] [Abstract][Full Text] [Related]
11. Identification of opioid receptor subtypes in antinociceptive actions of supraspinally-administered mitragynine in mice. Thongpradichote S; Matsumoto K; Tohda M; Takayama H; Aimi N; Sakai S; Watanabe H Life Sci; 1998; 62(16):1371-8. PubMed ID: 9585164 [TBL] [Abstract][Full Text] [Related]
12. The antinociceptive effect of amisulpride in mice is mediated through opioid mechanisms. Weizman T; Pick CG; Backer MM; Rigai T; Bloch M; Schreiber S Eur J Pharmacol; 2003 Oct; 478(2-3):155-9. PubMed ID: 14575800 [TBL] [Abstract][Full Text] [Related]
13. Possible involvement of supraspinal opioid and GABA receptors in CDP-choline-induced antinociception in acute pain models in rats. Hamurtekin E; Bagdas D; Gurun MS Neurosci Lett; 2007 Jun; 420(2):116-21. PubMed ID: 17531379 [TBL] [Abstract][Full Text] [Related]
14. Differential mechanisms mediating descending pain controls for antinociception induced by supraspinally administered endomorphin-1 and endomorphin-2 in the mouse. Ohsawa M; Mizoguchi H; Narita M; Chu M; Nagase H; Tseng LF J Pharmacol Exp Ther; 2000 Sep; 294(3):1106-11. PubMed ID: 10945866 [TBL] [Abstract][Full Text] [Related]
15. Antinociceptive mechanisms of platycodin D administered intracerebroventricularly in the mouse. Choi SS; Han EJ; Lee TH; Lee JK; Han KJ; Lee HK; Suh HW Planta Med; 2002 Sep; 68(9):794-8. PubMed ID: 12357389 [TBL] [Abstract][Full Text] [Related]
16. Pharmacological interaction of the calcium channel blockers verapamil and flunarizine with the opioid system. Weizman R; Getslev V; Pankova IA; Schrieber S; Pick CG Brain Res; 1999 Feb; 818(2):187-95. PubMed ID: 10082803 [TBL] [Abstract][Full Text] [Related]
17. The involvement of the opioidergic system in the antinociceptive mechanism of action of antidepressant compounds. Gray AM; Spencer PS; Sewell RD Br J Pharmacol; 1998 Jun; 124(4):669-74. PubMed ID: 9690858 [TBL] [Abstract][Full Text] [Related]
18. Possible involvement of cholinergic and opioid receptor mechanisms in fluoxetine mediated antinociception response in streptozotocin-induced diabetic mice. Anjaneyulu M; Chopra K Eur J Pharmacol; 2006 May; 538(1-3):80-4. PubMed ID: 16650402 [TBL] [Abstract][Full Text] [Related]