BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 12372631)

  • 1. An immunogold investigation of the distribution of calmodulin in the apex of cochlear hair cells.
    Furness DN; Karkanevatos A; West B; Hackney CM
    Hear Res; 2002 Nov; 173(1-2):10-20. PubMed ID: 12372631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal changes in the distribution of LHFPL5 in mice cochlear hair bundles during development and in the absence of PCDH15.
    Mahendrasingam S; Fettiplace R; Alagramam KN; Cross E; Furness DN
    PLoS One; 2017; 12(10):e0185285. PubMed ID: 29069081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dimensions and composition of stereociliary rootlets in mammalian cochlear hair cells: comparison between high- and low-frequency cells and evidence for a connection to the lateral membrane.
    Furness DN; Mahendrasingam S; Ohashi M; Fettiplace R; Hackney CM
    J Neurosci; 2008 Jun; 28(25):6342-53. PubMed ID: 18562604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Putative immunolocalization of the mechanoelectrical transduction channels in mammalian cochlear hair cells.
    Hackney CM; Furness DN; Benos DJ; Woodley JF; Barratt J
    Proc Biol Sci; 1992 Jun; 248(1323):215-21. PubMed ID: 1354359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localisation of putative mechanoelectrical transducer channels in cochlear hair cells by immunoelectron microscopy.
    Hackney CM; Furness DN; Benos DJ
    Scanning Microsc; 1991 Sep; 5(3):741-5; discussion 745-6. PubMed ID: 1808712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential distribution of beta- and gamma-actin in guinea-pig cochlear sensory and supporting cells.
    Furness DN; Katori Y; Mahendrasingam S; Hackney CM
    Hear Res; 2005 Sep; 207(1-2):22-34. PubMed ID: 16024192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The binding site on cochlear stereocilia for antisera raised against renal Na+ channels is blocked by amiloride and dihydrostreptomycin.
    Furness DN; Hackney CM; Benos DJ
    Hear Res; 1996 Apr; 93(1-2):136-46. PubMed ID: 8735075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructural localization of the likely mechanoelectrical transduction channel protein, transmembrane-like channel 1 (TMC1) during development of cochlear hair cells.
    Mahendrasingam S; Furness DN
    Sci Rep; 2019 Feb; 9(1):1274. PubMed ID: 30718571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic analysis of shear displacement as a means for operating mechanotransduction channels in the contact region between adjacent stereocilia of mammalian cochlear hair cells.
    Furness DN; Zetes DE; Hackney CM; Steele CR
    Proc Biol Sci; 1997 Jan; 264(1378):45-51. PubMed ID: 9061959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereociliary myosin-1c receptors are sensitive to calcium chelation and absent from cadherin 23 mutant mice.
    Phillips KR; Tong S; Goodyear R; Richardson GP; Cyr JL
    J Neurosci; 2006 Oct; 26(42):10777-88. PubMed ID: 17050716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of protocadherin-15 with the scaffold protein whirlin supports its anchoring of hair-bundle lateral links in cochlear hair cells.
    Michel V; Pepermans E; Boutet de Monvel J; England P; Nouaille S; Aghaie A; Delhommel F; Wolff N; Perfettini I; Hardelin JP; Petit C; Bahloul A
    Sci Rep; 2020 Oct; 10(1):16430. PubMed ID: 33009420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myosin-1c interacts with hair-cell receptors through its calmodulin-binding IQ domains.
    Cyr JL; Dumont RA; Gillespie PG
    J Neurosci; 2002 Apr; 22(7):2487-95. PubMed ID: 11923413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-links between stereocilia in the guinea pig cochlea.
    Furness DN; Hackney CM
    Hear Res; 1985 May; 18(2):177-88. PubMed ID: 4044419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereociliary cross-links between adjacent inner hair cells.
    Hackney CM; Furness DN; Sayers DL
    Hear Res; 1988 Jul; 34(2):207-11. PubMed ID: 3170364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of expression of the actin filament-bundling protein espin with stereociliary bundle formation in the developing inner ear.
    Li H; Liu H; Balt S; Mann S; Corrales CE; Heller S
    J Comp Neurol; 2004 Jan; 468(1):125-34. PubMed ID: 14648695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral mechanical coupling of stereocilia in cochlear hair bundles.
    Langer MG; Fink S; Koitschev A; Rexhausen U; Hörber JK; Ruppersberg JP
    Biophys J; 2001 Jun; 80(6):2608-21. PubMed ID: 11371438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructural localisation of spectrin in sensory and supporting cells of guinea-pig organ of Corti.
    Mahendrasingam S; Furness DN; Hackney CM
    Hear Res; 1998 Dec; 126(1-2):151-60. PubMed ID: 9872143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further observations on the fine structure of tip links between stereocilia of the guinea pig cochlea.
    Osborne MP; Comis SD; Pickles JO
    Hear Res; 1988 Sep; 35(1):99-108. PubMed ID: 3182414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunoelectron microscopic and immunofluorescent localization of cytoskeletal and muscle-like contractile proteins in inner ear sensory hair cells.
    Slepecky N; Chamberlain SC
    Hear Res; 1985; 20(3):245-60. PubMed ID: 3910630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of the ankle-link complex in cochlear hair cells and its role in the hair bundle functioning.
    Michalski N; Michel V; Bahloul A; Lefèvre G; Barral J; Yagi H; Chardenoux S; Weil D; Martin P; Hardelin JP; Sato M; Petit C
    J Neurosci; 2007 Jun; 27(24):6478-88. PubMed ID: 17567809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.