BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12372687)

  • 1. Hair-MAP: a prototype automated system for forensic hair comparison and analysis.
    Verma MS; Pratt L; Ganesh C; Medina C
    Forensic Sci Int; 2002 Oct; 129(3):168-86. PubMed ID: 12372687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A feature-preserving hair removal algorithm for dermoscopy images.
    Abbas Q; Garcia IF; Emre Celebi M; Ahmad W
    Skin Res Technol; 2013 Feb; 19(1):e27-36. PubMed ID: 22211360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A precise automatic system for the hair assessment in hair-care diagnosis applications.
    Shih H
    Skin Res Technol; 2015 Nov; 21(4):500-7. PubMed ID: 26119754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automation of Detection of Cervical Cancer Using Convolutional Neural Networks.
    Kudva V; Prasad K; Guruvare S
    Crit Rev Biomed Eng; 2018; 46(2):135-145. PubMed ID: 30055530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of human hair by colour and diameter using light microscopy, digital imaging and statistical analysis.
    Mills M; Bonetti J; Brettell T; Quarino L
    J Microsc; 2018 Apr; 270(1):27-40. PubMed ID: 28960300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary study of hair form of Japanese head hairs using image analysis.
    Sato H
    Forensic Sci Int; 2003 Jan; 131(2-3):202-8. PubMed ID: 12590060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capturing and displaying microscopic images used in medical diagnostics and forensic science using 4K video resolution - an application in higher education.
    Maier H; de Heer G; Ortac A; Kuijten J
    J Microsc; 2015 Nov; 260(2):175-9. PubMed ID: 26250075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagnostic and neural analysis of skin cancer (DANAOS). A multicentre study for collection and computer-aided analysis of data from pigmented skin lesions using digital dermoscopy.
    Hoffmann K; Gambichler T; Rick A; Kreutz M; Anschuetz M; Grünendick T; Orlikov A; Gehlen S; Perotti R; Andreassi L; Newton Bishop J; Césarini JP; Fischer T; Frosch PJ; Lindskov R; Mackie R; Nashan D; Sommer A; Neumann M; Ortonne JP; Bahadoran P; Penas PF; Zoras U; Altmeyer P
    Br J Dermatol; 2003 Oct; 149(4):801-9. PubMed ID: 14616373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fingerprint matching using recurrent autoassociative memory.
    Poorna B; Easwarakumar KS
    Int J Neural Syst; 2003 Aug; 13(4):263-71. PubMed ID: 12964213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images.
    Osareh A; Shadgar B; Markham R
    IEEE Trans Inf Technol Biomed; 2009 Jul; 13(4):535-45. PubMed ID: 19586814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medical Image Classification Based on Deep Features Extracted by Deep Model and Statistic Feature Fusion with Multilayer Perceptron
    Lai Z; Deng H
    Comput Intell Neurosci; 2018; 2018():2061516. PubMed ID: 30298088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. No-reference hair occlusion assessment for dermoscopy images based on distribution feature.
    Xie F; Li Y; Meng R; Jiang Z
    Comput Biol Med; 2015 Apr; 59():106-115. PubMed ID: 25701625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time recognition of patient intentions from sequences of pressure maps using artificial neural networks.
    Chica M; Campoy P; Pérez MA; Rodríguez T; Rodríguez R; Valdemoros O
    Comput Biol Med; 2012 Apr; 42(4):364-75. PubMed ID: 22226044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A robust hair segmentation and removal approach for clinical images of skin lesions.
    Huang A; Kwan SY; Chang WY; Liu MY; Chi MH; Chen GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3315-8. PubMed ID: 24110437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic brain MR image denoising based on texture feature-based artificial neural networks.
    Chang YN; Chang HH
    Biomed Mater Eng; 2015; 26 Suppl 1():S1275-82. PubMed ID: 26405887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endoscopic Image Classification and Retrieval using Clustered Convolutional Features.
    Ahmad J; Muhammad K; Lee MY; Baik SW
    J Med Syst; 2017 Oct; 41(12):196. PubMed ID: 29086034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated diagnosis of brain tumours astrocytomas using probabilistic neural network clustering and support vector machines.
    Glotsos D; Tohka J; Ravazoula P; Cavouras D; Nikiforidis G
    Int J Neural Syst; 2005; 15(1-2):1-11. PubMed ID: 15912578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neural network approach for fast, automated quantification of DIR performance.
    Neylon J; Min Y; Low DA; Santhanam A
    Med Phys; 2017 Aug; 44(8):4126-4138. PubMed ID: 28477340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An expert diagnostic system based on neural networks and image analysis techniques in the field of automated cytogenetics.
    Beksaç MS; Eskiizmirliler S; Cakar AN; Erkmen AM; Dağdeviren A; Lundsteen C
    Technol Health Care; 1996 Mar; 3(4):217-29. PubMed ID: 8705397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks.
    Ibragimov B; Xing L
    Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.