BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 12372838)

  • 1. The antibiotic activity of N-pentylpantothenamide results from its conversion to ethyldethia-coenzyme a, a coenzyme a antimetabolite.
    Strauss E; Begley TP
    J Biol Chem; 2002 Dec; 277(50):48205-9. PubMed ID: 12372838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The antibiotic CJ-15,801 is an antimetabolite that hijacks and then inhibits CoA biosynthesis.
    van der Westhuyzen R; Hammons JC; Meier JL; Dahesh S; Moolman WJ; Pelly SC; Nizet V; Burkart MD; Strauss E
    Chem Biol; 2012 May; 19(5):559-71. PubMed ID: 22633408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibacterial activity of N-pentylpantothenamide is due to inhibition of coenzyme a synthesis.
    Thomas J; Cronan JE
    Antimicrob Agents Chemother; 2010 Mar; 54(3):1374-7. PubMed ID: 20047918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acyl carrier protein is a cellular target for the antibacterial action of the pantothenamide class of pantothenate antimetabolites.
    Zhang YM; Frank MW; Virga KG; Lee RE; Rock CO; Jackowski S
    J Biol Chem; 2004 Dec; 279(49):50969-75. PubMed ID: 15459190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How pantothenol intervenes in Coenzyme-A biosynthesis of Mycobacterium tuberculosis.
    Kumar P; Chhibber M; Surolia A
    Biochem Biophys Res Commun; 2007 Oct; 361(4):903-9. PubMed ID: 17679145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring structural motifs necessary for substrate binding in the active site of Escherichia coli pantothenate kinase.
    Awuah E; Ma E; Hoegl A; Vong K; Habib E; Auclair K
    Bioorg Med Chem; 2014 Jun; 22(12):3083-90. PubMed ID: 24814884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a new pantothenate kinase isoform from Helicobacter pylori.
    Brand LA; Strauss E
    J Biol Chem; 2005 May; 280(21):20185-8. PubMed ID: 15795230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pantothenic acid administration on 4'-phosphopantetheine and dephospho-CoA content in rat liver determined by the use of biosynthetic reaction of CoA in vitro from these precursor substances.
    Nakamura T; Kusunoki T; Soyama K
    J Vitaminol (Kyoto); 1967 Dec; 13(4):289-97. PubMed ID: 5591021
    [No Abstract]   [Full Text] [Related]  

  • 9. Coenzyme A biosynthesis: an antimicrobial drug target.
    Spry C; Kirk K; Saliba KJ
    FEMS Microbiol Rev; 2008 Jan; 32(1):56-106. PubMed ID: 18173393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in pantothenate kinase type determines the pantothenamide mode of action and impacts on coenzyme A salvage biosynthesis.
    de Villiers M; Barnard L; Koekemoer L; Snoep JL; Strauss E
    FEBS J; 2014 Oct; 281(20):4731-53. PubMed ID: 25156889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot chemoenzymatic preparation of coenzyme A analogues.
    Nazi I; Koteva KP; Wright GD
    Anal Biochem; 2004 Jan; 324(1):100-5. PubMed ID: 14654051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a method for the parallel synthesis and purification of N-substituted pantothenamides, known inhibitors of coenzyme A biosynthesis and utilization.
    van Wyk M; Strauss E
    Org Biomol Chem; 2008 Dec; 6(23):4348-55. PubMed ID: 19005594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Mechanism of Regulation of Pantothenate Biosynthesis by the PanD-PanZ·AcCoA Complex Reveals an Additional Mode of Action for the Antimetabolite N-Pentyl Pantothenamide (N5-Pan).
    Arnott ZLP; Nozaki S; Monteiro DCF; Morgan HE; Pearson AR; Niki H; Webb ME
    Biochemistry; 2017 Sep; 56(37):4931-4939. PubMed ID: 28832133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous high-performance liquid chromatography determination of coenzyme A, dephospho-coenzyme A, and acetyl-coenzyme A in normal and pantothenic acid-deficient rats.
    Shibata K; Nakai T; Fukuwatari T
    Anal Biochem; 2012 Nov; 430(2):151-5. PubMed ID: 22922385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antiplasmodial Mode of Action of Pantothenamides: Pantothenate Kinase Serves as a Metabolic Activator Not as a Target.
    de Villiers M; Spry C; Macuamule CJ; Barnard L; Wells G; Saliba KJ; Strauss E
    ACS Infect Dis; 2017 Jul; 3(7):527-541. PubMed ID: 28437604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of the PanD/PanZ protein complex reveals negative feedback regulation of pantothenate biosynthesis by coenzyme A.
    Monteiro DCF; Patel V; Bartlett CP; Nozaki S; Grant TD; Gowdy JA; Thompson GS; Kalverda AP; Snell EH; Niki H; Pearson AR; Webb ME
    Chem Biol; 2015 Apr; 22(4):492-503. PubMed ID: 25910242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turnover rate of coenzyme A in mouse brain and liver.
    Orsatti L; Orsale MV; di Pasquale P; Vecchi A; Colaceci F; Ciammaichella A; Rossetti I; Bonelli F; Baumgaertel K; Liu K; Elbaum D; Monteagudo E
    PLoS One; 2021; 16(5):e0251981. PubMed ID: 34019583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereochemical modification of geminal dialkyl substituents on pantothenamides alters antimicrobial activity.
    Hoegl A; Darabi H; Tran E; Awuah E; Kerdo ES; Habib E; Saliba KJ; Auclair K
    Bioorg Med Chem Lett; 2014 Aug; 24(15):3274-7. PubMed ID: 24986662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coenzyme A and its derivatives: renaissance of a textbook classic.
    Theodoulou FL; Sibon OC; Jackowski S; Gout I
    Biochem Soc Trans; 2014 Aug; 42(4):1025-32. PubMed ID: 25109997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coenzyme A: back in action.
    Leonardi R; Zhang YM; Rock CO; Jackowski S
    Prog Lipid Res; 2005; 44(2-3):125-53. PubMed ID: 15893380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.