These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 12372911)

  • 1. The effects of protein, red blood cells and whole blood on PS valve function.
    Baird C; Farner S; Mohr C; Pittman T
    Pediatr Neurosurg; 2002 Oct; 37(4):186-93. PubMed ID: 12372911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of protein and blood cells on the flow-pressure characteristics of shunts.
    Brydon HL; Bayston R; Hayward R; Harkness W
    Neurosurgery; 1996 Mar; 38(3):498-504; discussion 505. PubMed ID: 8837802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical properties of cerebrospinal fluid of relevance to shunt function. 1: The effect of protein upon CSF viscosity.
    Brydon HL; Hayward R; Harkness W; Bayston R
    Br J Neurosurg; 1995; 9(5):639-44. PubMed ID: 8561936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical properties of cerebrospinal fluid of relevance to shunt function. 2: The effect of protein upon CSF surface tension and contact angle.
    Brydon HL; Hayward R; Harkness W; Bayston R
    Br J Neurosurg; 1995; 9(5):645-51. PubMed ID: 8561937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the Effects of Cerebrospinal Fluid Protein Content on the Performance of Differential Pressure Valves and Antisiphon Devices Using a Novel Benchtop Shunting Model.
    Gorelick NL; Serra R; Iyer R; Um R; Grewal A; Monroe A; Antoine H; Beharry K; Cecia A; Kroll F; Ishida W; Perdomo-Pantoja A; Xu R; Loth F; Ye X; Suk I; Tyler B; Bayston R; Luciano MG
    Neurosurgery; 2020 Oct; 87(5):1046-1054. PubMed ID: 32521017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the best cerebrospinal fluid shunt valve design: the pediatric valve design trial.
    Drake JM; Kestle JT
    Neurosurgery; 1998 Nov; 43(5):1259-60. PubMed ID: 9802875
    [No Abstract]   [Full Text] [Related]  

  • 7. Removed shunt valves: reasons for failure and implications for valve design.
    Brydon HL; Bayston R; Hayward R; Harkness W
    Br J Neurosurg; 1996 Jun; 10(3):245-51. PubMed ID: 8799534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Explanted shunt valves: factors contributing to their failure.
    Brydon HL; Bayston R; Hayward RD; Harkness WF
    Eur J Pediatr Surg; 1994 Dec; 4 Suppl 1():37-8. PubMed ID: 7766553
    [No Abstract]   [Full Text] [Related]  

  • 10. [Treatment of hydrocephalus with Cordis-Hakim valve (author's transl)].
    Schubert W; Prater C; Roesner D
    Z Kinderchir; 1981 May; 33(1):18-24. PubMed ID: 7257613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro experiment for verification of the tandem shunt valve system: a novel method for treating hydrocephalus by flexibly controlling cerebrospinal fluid flow and intracranial pressure.
    Aihara Y; Shoji I; Okada Y
    J Neurosurg Pediatr; 2013 Jan; 11(1):43-7. PubMed ID: 23140212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation of structural degradation of cerebrospinal fluid shunt valves performed using scanning electron microscopy and energy-dispersive x-ray microanalysis.
    Sgouros S; Dipple SJ
    J Neurosurg; 2004 Mar; 100(3):534-40. PubMed ID: 15035291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term survival rates of gravity-assisted, adjustable differential pressure valves in infants with hydrocephalus.
    Gebert AF; Schulz M; Schwarz K; Thomale UW
    J Neurosurg Pediatr; 2016 May; 17(5):544-51. PubMed ID: 26799410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of in-vivo hydrocephalus shunt dynamics for blockage and performance diagnostics.
    Schley D; Billingham J; Marchbanks RJ
    Math Med Biol; 2004 Dec; 21(4):347-68. PubMed ID: 15567889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Hakim programmable valve: reasons for reprogramming failures.
    Mauer UM; Schuler J; Kunz U
    J Neurosurg; 2007 Oct; 107(4):788-91. PubMed ID: 17937224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early programmable valve malfunctions in pediatric hydrocephalus.
    Mangano FT; Menendez JA; Habrock T; Narayan P; Leonard JR; Park TS; Smyth MD
    J Neurosurg; 2005 Dec; 103(6 Suppl):501-7. PubMed ID: 16383248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A theoretical study of new types of valve shunts for cerebrospinal fluid.
    Bosio A
    ASAIO Trans; 1991; 37(3):M289-90. PubMed ID: 1751154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The treatment of infantile hydrocephalus: "differential-pressure" or "flow-control" valves. A pilot study.
    Jain H; Sgouros S; Walsh AR; Hockley AD
    Childs Nerv Syst; 2000 Apr; 16(4):242-6. PubMed ID: 10855523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the risk of shunt failure or infection related to cerebrospinal fluid cell count, protein level, and glucose levels in low-birth-weight premature infants with posthemorrhagic hydrocephalus.
    Fulkerson DH; Vachhrajani S; Bohnstedt BN; Patel NB; Patel AJ; Fox BD; Jea A; Boaz JC
    J Neurosurg Pediatr; 2011 Feb; 7(2):147-51. PubMed ID: 21284459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A MEMS-based passive hydrocephalus shunt for body position controlled intracranial pressure regulation.
    Johansson SB; Eklund A; Malm J; Stemme G; Roxhed N
    Biomed Microdevices; 2014 Aug; 16(4):529-36. PubMed ID: 24609991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.