BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 1237313)

  • 1. Effect of ligands on the reactivity of essential sulfhydryls in brain hexokinase. Possible interaction between substrate binding sites.
    Redkar VD; Kenkare UW
    Biochemistry; 1975 Oct; 14(21):4704-12. PubMed ID: 1237313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of Escherichia coli glycerol kinase by 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide: evidence for nucleotide regulatory binding sites.
    Pettigrew DW
    Biochemistry; 1986 Aug; 25(16):4711-8. PubMed ID: 3021201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of nucleoside triphosphates, inorganic phosphate, and other polyanionic ligands to the N-terminal region of rat brain hexokinase: relationship to regulation of hexokinase activity by antagonistic interactions between glucose 6-phosphate and inorganic phosphate.
    White TK; Wilson JE
    Arch Biochem Biophys; 1990 Feb; 277(1):26-34. PubMed ID: 2306121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction of brain hexokinase with a substrate-like reagent. Alkylation of a single thiol at the active site.
    Swarup G; Kenkare UW
    Biochemistry; 1980 Aug; 19(17):4058-64. PubMed ID: 7407081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the reactivity of the essential sulfhydryl groups as a conformational probe for the fatty acid synthetase of chicken liver. Inactivation by 5,5'-dithiobis-(2-nitrobenzoic acid) and intersubunit cross-linking of the inactivated enzyme.
    Tian WX; Hsu RY; Wang YS
    J Biol Chem; 1985 Sep; 260(20):11375-87. PubMed ID: 4030792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ligand-induced conformational changes on the reactivity of specific sulfhydryl residues in rat brain hexokinase.
    Hutny J; Wilson JE
    Arch Biochem Biophys; 1990 Nov; 283(1):173-83. PubMed ID: 2241169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction of brain hexokinase with tetranitromethane: oxidation of essential thiol groups.
    Subbarao B; Kenkare UW
    Arch Biochem Biophys; 1977 May; 181(1):8-18. PubMed ID: 18114
    [No Abstract]   [Full Text] [Related]  

  • 8. Rat brain hexokinase: location of the substrate hexose binding site in a structural domain at the C-terminus of the enzyme.
    Schirch DM; Wilson JE
    Arch Biochem Biophys; 1987 May; 254(2):385-96. PubMed ID: 3579310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Essential cysteines in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase from Escherichia coli: analysis by chemical modification and site-directed mutagenesis.
    Salleh HM; Patel MA; Woodard RW
    Biochemistry; 1996 Jul; 35(27):8942-7. PubMed ID: 8688430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple oxidation products of sulfhydryl groups near the active site of thiolase I from porcine heart.
    Izbicka-Dimitrijević E; Gilbert HF
    Biochemistry; 1984 Sep; 23(19):4318-24. PubMed ID: 6148962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic studies of rat liver hexokinase D ('glucokinase') in non-co-operative conditions show an ordered mechanism with MgADP as the last product to be released.
    Monasterio O; Cárdenas ML
    Biochem J; 2003 Apr; 371(Pt 1):29-38. PubMed ID: 12513690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ligand binding on the tryptic digestion pattern of rat brain hexokinase: relationship of ligand-induced conformational changes to catalytic and regulatory functions.
    Smith AD; Wilson JE
    Arch Biochem Biophys; 1991 Nov; 291(1):59-68. PubMed ID: 1929435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reactions of Escherichia coli citrate synthase with the sulfhydryl reagents 5,5'-dithiobis-(2-nitrobenzoic acid) and 4,4'-dithiodipyridine.
    Talgoy MM; Bell AW; Duckworth HW
    Can J Biochem; 1979 Jun; 57(6):822-33. PubMed ID: 38891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of modification of the mitochondrial succinate-ubiquinone reductase by 5,5'-dithiobis-(2-nitro-benzoic acid).
    Yang Y; Wang HR; Xu JX; Zhou HM
    J Protein Chem; 1996 Feb; 15(2):169-76. PubMed ID: 8924201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trypanosoma cruzi phospho enol pyruvate carboxykinase (ATP-dependent): transition metal ion requirement for activity and sulfhydryl group reactivity.
    Jurado LA; Machín I; Urbina JA
    Biochim Biophys Acta; 1996 Jan; 1292(1):188-96. PubMed ID: 8547343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essential thiols of yeast hexokinase: alkylation by a substrate-like reagent.
    Otieno S; Bhargava AK; Barnard EA; Ramel AH
    Biochemistry; 1975 Jun; 14(11):2403-10. PubMed ID: 1095053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance studies on the interaction of metal-ion and nucleotide ligands with brain hexokinase.
    Jarori GK; Mehta A; Kasturi SR; Kenkare UW
    Eur J Biochem; 1984 Sep; 143(3):669-76. PubMed ID: 6090139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on regulatory functions of malic enzymes. VII. Structural and functional characteristics of sulfhydryl groups in NADP-linked malic enzyme from Escherichia coli W.
    Iwakura M; Tokushige M; Katsuki H
    J Biochem; 1979 Nov; 86(5):1239-49. PubMed ID: 42642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-phenylalanine induced changes of sulfhydryl reactivity in rabbit muscle pyruvate kinase.
    Kwan CY; Davis RC
    Can J Biochem; 1981 Feb; 59(2):92-9. PubMed ID: 7237230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of inorganic phosphate on the reverse reaction of bovine brain hexokinase.
    Solheim LP; Fromm HJ
    Biochemistry; 1983 Apr; 22(9):2234-9. PubMed ID: 6860661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.