BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 12373436)

  • 21. Differential behavioral and neurochemical effects of cocaine after early exposure to methylphenidate in an animal model of attention deficit hyperactivity disorder.
    Augustyniak PN; Kourrich S; Rezazadeh SM; Stewart J; Arvanitogiannis A
    Behav Brain Res; 2006 Feb; 167(2):379-82. PubMed ID: 16246436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of abstinence and conditions of cocaine access on the reinforcing strength of cocaine in nonhuman primates.
    Czoty PW; Martelle JL; Nader MA
    Drug Alcohol Depend; 2006 Dec; 85(3):213-20. PubMed ID: 16730922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential of [(18)F]beta-CFT-FE (2beta-carbomethoxy-3beta-(4-fluorophenyl)-8-(2-[(18)F]fluoroethyl)nortropane) as a dopamine transporter ligand: A PET study in the conscious monkey brain.
    Harada N; Ohba H; Fukumoto D; Kakiuchi T; Tsukada H
    Synapse; 2004 Oct; 54(1):37-45. PubMed ID: 15300883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of heroin and cocaine self-administration by dopamine D1- and D2-like receptor agonists in rhesus monkeys.
    Rowlett JK; Platt DM; Yao WD; Spealman RD
    J Pharmacol Exp Ther; 2007 Jun; 321(3):1135-43. PubMed ID: 17351103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential activation of dopamine release in the nucleus accumbens core and shell after acute or repeated amphetamine injections: a comparative study in the Roman high- and low-avoidance rat lines.
    Giorgi O; Piras G; Lecca D; Corda MG
    Neuroscience; 2005; 135(3):987-98. PubMed ID: 16154292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dopaminergic responses to self-administered cocaine in Rhesus monkeys do not sensitize following high cumulative intake.
    Bradberry CW; Rubino SR
    Eur J Neurosci; 2006 May; 23(10):2773-8. PubMed ID: 16817880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential cocaine-induced modulation of glutamate and dopamine transporters after contingent and non-contingent administration.
    Miguéns M; Crespo JA; Del Olmo N; Higuera-Matas A; Montoya GL; García-Lecumberri C; Ambrosio E
    Neuropharmacology; 2008 Oct; 55(5):771-9. PubMed ID: 18634806
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional effects of cocaine self-administration in primate brain regions regulating cardiovascular function.
    Beveridge TJ; Smith HR; Nader MA; Porrino LJ
    Neurosci Lett; 2004 Nov; 370(2-3):201-5. PubMed ID: 15488323
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cocaine self-administration and locomotor activity are altered in Lewis and F344 inbred rats by RTI 336, a 3-phenyltropane analog that binds to the dopamine transporter.
    Haile CN; Zhang XY; Carroll FI; Kosten TA
    Brain Res; 2005 Sep; 1055(1-2):186-95. PubMed ID: 16095575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous measurement of extracellular dopamine and dopamine transporter occupancy by cocaine analogs in squirrel monkeys.
    Kimmel HL; Nye JA; Voll R; Mun J; Stehouwer J; Goodman MM; Votaw JR; Carroll FI; Howell LL
    Synapse; 2012 Jun; 66(6):501-8. PubMed ID: 22237864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationship between rate of drug uptake in brain and behavioral pharmacology of monoamine transporter inhibitors in rhesus monkeys.
    Kimmel HL; Negus SS; Wilcox KM; Ewing SB; Stehouwer J; Goodman MM; Votaw JR; Mello NK; Carroll FI; Howell LL
    Pharmacol Biochem Behav; 2008 Sep; 90(3):453-62. PubMed ID: 18468667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Outlines of interdisciplinary addiction research given by the example of medical imaging with PET, SPECT and fMRI regarding effects of psychotropic substances].
    Giacomuzzi SM; Golaszewski S; Ertl M; Riemer Y; Brandauer E; Ennemoser O; Rössler H; Hinterhuber H
    Neuropsychiatr; 2010; 24(4):224-33. PubMed ID: 21176703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New perspectives on using brain imaging to study CNS stimulants.
    Lukas SE
    Neuropharmacology; 2014 Dec; 87():104-14. PubMed ID: 25080072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Role for Sigma Receptors in Stimulant Self-Administration and Addiction.
    Katz JL; Hiranita T; Hong WC; Job MO; McCurdy CR
    Handb Exp Pharmacol; 2017; 244():177-218. PubMed ID: 28110353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A role for sigma receptors in stimulant self-administration and addiction.
    Katz JL; Hong WC; Hiranita T; Su TP
    Behav Pharmacol; 2016 Apr; 27(2-3 Spec Issue):100-15. PubMed ID: 26650253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neurochemical mechanisms in rat behavioral models of the euphorigenic and antihyperkinetic actions of psychomotor stimulant drugs.
    Hill RT
    Psychopharmacol Bull; 1975 Jul; 11(3):37-8. PubMed ID: 239434
    [No Abstract]   [Full Text] [Related]  

  • 37. Nonhuman primate neuroimaging and the neurobiology of psychostimulant addiction.
    Howell LL; Murnane KS
    Ann N Y Acad Sci; 2008 Oct; 1141():176-94. PubMed ID: 18991958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Behavioral and neurochemical characteristics of stimulant-induced augmentation.
    Segal DS; Kuczenski R
    Psychopharmacol Bull; 1987; 23(3):417-24. PubMed ID: 2893420
    [No Abstract]   [Full Text] [Related]  

  • 39. Neurobiology of addiction: insight from neurochemical imaging.
    Urban NB; Martinez D
    Psychiatr Clin North Am; 2012 Jun; 35(2):521-41. PubMed ID: 22640769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D(2) receptors.
    Volkow ND; Wang GJ; Fowler JS; Logan J; Gatley SJ; Wong C; Hitzemann R; Pappas NR
    J Pharmacol Exp Ther; 1999 Oct; 291(1):409-15. PubMed ID: 10490931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.