BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 12373438)

  • 1. The effects of psychotomimetics and psychomotor stimulants on two schedules promoting response switching in the rat.
    Evenden J
    Psychopharmacology (Berl); 2002 Oct; 163(3-4):381-90. PubMed ID: 12373438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of psychotomimetic and putative cognitive-enhancing drugs on the performance of a n-back working memory task in rats.
    Ko T; Evenden J
    Psychopharmacology (Berl); 2009 Jan; 202(1-3):67-78. PubMed ID: 18825373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the molecular structure of behavior: separate effects of caffeine, cocaine, and adenosine agonists on interresponse times and lever-press durations.
    Newland MC
    Behav Pharmacol; 1997 Feb; 8(1):1-16. PubMed ID: 9832996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of d-amphetamine, monomethoxyamphetamines and hallucinogens on schedule-controlled behavior.
    Harris RA; Snell D; Loh HH
    J Pharmacol Exp Ther; 1978 Jan; 204(1):103-17. PubMed ID: 619124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Schedule-dependent effects of haloperidol and amphetamine: multiple-schedule task shows within-subject effects.
    Caul WF; Brindle NA
    Pharmacol Biochem Behav; 2001 Jan; 68(1):53-63. PubMed ID: 11274708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the effects of psychotomimetics and anxiolytics on punished and unpunished responding maintained by fixed interval schedules of food reinforcement in the rat.
    Evenden J; Duncan B; Ko T
    Behav Pharmacol; 2006 Feb; 17(1):87-99. PubMed ID: 16377966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The psychopharmacology of impulsive behaviour in rats VIII: effects of amphetamine, methylphenidate, and other drugs on responding maintained by a fixed consecutive number avoidance schedule.
    Evenden J; Ko T
    Psychopharmacology (Berl); 2005 Jul; 180(2):294-305. PubMed ID: 15717210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioral effects of nicotine, amphetamine and cocaine under a fixed-interval schedule of food reinforcement in rats chronically exposed to caffeine.
    Jaszyna M; Gasior M; Shoaib M; Yasar S; Goldberg SR
    Psychopharmacology (Berl); 1998 Dec; 140(3):257-71. PubMed ID: 9877005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of d-lysergic acid diethylamide (LSD), 2,5-dimethoxy-4-methylamphetamine (DOM) and d-amphetamine on operant responding in control and 6-hydroxydopamine-treated rats.
    Commissaris R; Lyness WH; Cordon JJ; Moore KE; Rech RH
    Pharmacol Biochem Behav; 1980 Nov; 13(5):621-6. PubMed ID: 7443731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free operant and discrete trial performance of mice in the nine-hole box apparatus: validation using amphetamine and scopolamine.
    Bensadoun JC; Brooks SP; Dunnett SB
    Psychopharmacology (Berl); 2004 Jul; 174(3):396-405. PubMed ID: 14985934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of aripiprazole on operant responding for a natural reward after psychostimulant withdrawal in rats.
    Schwabe K; Koch M
    Psychopharmacology (Berl); 2007 Apr; 191(3):759-65. PubMed ID: 16953383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Failure of ibogaine to produce phencyclidine-like discriminative stimulus effects in rats and monkeys.
    Jones HE; Li H; Balster RL
    Pharmacol Biochem Behav; 1998 Feb; 59(2):413-8. PubMed ID: 9476989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intranucleus accumbens amphetamine infusions enhance responding maintained by a stimulus complex paired with oral ethanol self-administration.
    Slawecki CJ; Samson HH; Chappell A
    Pharmacol Biochem Behav; 1997 Dec; 58(4):1065-73. PubMed ID: 9408215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental modulation of the interoceptive effects of amphetamine in the rat.
    Paolone G; Palopoli M; Marrone MC; Nencini P; Badiani A
    Behav Brain Res; 2004 Jun; 152(1):149-55. PubMed ID: 15135978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurotransmitter basis of the behavioral effects of hallucinogens.
    Rech RH; Commissaris RL
    Neurosci Biobehav Rev; 1982; 6(4):521-7. PubMed ID: 6817241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug discrimination under a concurrent fixed-interval fixed-interval schedule.
    McMillan DE; Li M; Hardwick WC
    J Exp Anal Behav; 1997 Sep; 68(2):193-217. PubMed ID: 9335138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of working memory in rats using spatial alternation behavior with variable retention intervals: effects of fixed-ratio size and scopolamine.
    Shannon HE; Bemis KG; Hart JC
    Psychopharmacology (Berl); 1990; 100(4):491-7. PubMed ID: 2320710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Psychomotor stimulant effects of d-amphetamine, MDMA and PCP: aggressive and schedule-controlled behavior in mice.
    Miczek KA; Haney M
    Psychopharmacology (Berl); 1994 Jul; 115(3):358-65. PubMed ID: 7871076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delta 9-tetrahydrocannabinol interactions with phencyclidine and ethanol: effects on accuracy and rate of responding.
    Doty P; Dysktra LA; Picker MJ
    Pharmacol Biochem Behav; 1992 Sep; 43(1):61-70. PubMed ID: 1329118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishing oral preference for quinine, phencyclidine and caffeine solutions in rats.
    Falk JL; Yosef E; Schwartz A; Lau CE
    Behav Pharmacol; 1999 Feb; 10(1):27-38. PubMed ID: 10780300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.