These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 12374349)

  • 1. Anode-break excitation during end-diastolic stimulation is explained by half-cell double layer discharge.
    Nikolski V; Sambelashvili A; Efimov IR
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1217-20. PubMed ID: 12374349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode.
    Roth BJ
    IEEE Trans Biomed Eng; 1995 Dec; 42(12):1174-84. PubMed ID: 8550059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of make and break excitation revisited: paradoxical break excitation during diastolic stimulation.
    Nikolski VP; Sambelashvili AT; Efimov IR
    Am J Physiol Heart Circ Physiol; 2002 Feb; 282(2):H565-75. PubMed ID: 11788404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring anodal and cathodal make and break cardiac excitation mechanisms in a 3D anisotropic bidomain model.
    Colli-Franzone P; Pavarino LF; Scacchi S
    Math Biosci; 2011 Apr; 230(2):96-114. PubMed ID: 21329705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interdependence of virtual electrode polarization and conduction velocity during premature stimulation.
    Gray RA; Iyer A; Berenfeld O; Pertsov AM; Hyatt CJ
    J Electrocardiol; 2006 Oct; 39(4 Suppl):S13-8. PubMed ID: 17015062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decomposition of field-induced transmembrane potential responses of single cardiac cells.
    Sharma V; Lu SN; Tung L
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1031-7. PubMed ID: 12214875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intramural measurement of transmembrane potential in the isolated pig heart: validation of a novel technique.
    Caldwell BJ; Legrice IJ; Hooks DA; Tai DC; Pullan AJ; Smaill BH
    J Cardiovasc Electrophysiol; 2005 Sep; 16(9):1001-10. PubMed ID: 16174023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane voltage changes during unipolar stimulation of rabbit ventricle.
    Knisley SB
    Circ Res; 1995 Dec; 77(6):1229-39. PubMed ID: 7586236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examination of stimulation mechanism and strength-interval curve in cardiac tissue.
    Sidorov VY; Woods MC; Baudenbacher P; Baudenbacher F
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2602-15. PubMed ID: 16100241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode.
    Jensen RJ; Rizzo JF
    Exp Eye Res; 2006 Aug; 83(2):367-73. PubMed ID: 16616739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of premature anodal stimulations on cardiac transmembrane potential and intracellular calcium distributions computed by anisotropic Bidomain models.
    Colli Franzone P; Pavarino LF; Scacchi S
    Europace; 2014 May; 16(5):736-42. PubMed ID: 24798963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of elevated extracellular potassium on the stimulation mechanism of diastolic cardiac tissue.
    Sidorov VY; Woods MC; Wikswo JP
    Biophys J; 2003 May; 84(5):3470-9. PubMed ID: 12719272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of anodal vs. cathodal pacing on the mechanical performance of the isolated rabbit heart.
    Thakral A; Stein LH; Shenai M; Gramatikov BI; Thakor NV
    J Appl Physiol (1985); 2000 Sep; 89(3):1159-64. PubMed ID: 10956364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intramural activation and repolarization sequences in canine ventricles. Experimental and simulation studies.
    Taccardi B; Punske BB; Sachse F; Tricoche X; Colli-Franzone P; Pavarino LF; Zabawa C
    J Electrocardiol; 2005 Oct; 38(4 Suppl):131-7. PubMed ID: 16226088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms for electrical stimulation of excitable tissue.
    Roth BJ
    Crit Rev Biomed Eng; 1994; 22(3-4):253-305. PubMed ID: 8598130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel mechanism of anode-break stimulation predicted by bidomain modeling.
    Ranjan R; Tomaselli GF; Marbán E
    Circ Res; 1999 Feb; 84(2):153-6. PubMed ID: 9933246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse polarity pacing: the hemodynamic benefit of anodal currents at lead tips for cardiac resynchronization therapy.
    Lloyd MS; Heeke S; Lerakis S; Langberg JJ
    J Cardiovasc Electrophysiol; 2007 Nov; 18(11):1167-71. PubMed ID: 17764446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of anodal stimulation on V-V timing at varying V-V intervals.
    van Gelder BM; Bracke FA; Meijer A
    Pacing Clin Electrophysiol; 2005 Aug; 28(8):771-6. PubMed ID: 16105002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of the fiber curvature gradient on break excitation in cardiac tissue.
    Beaudoin DL; Roth BJ
    Pacing Clin Electrophysiol; 2006 May; 29(5):496-501. PubMed ID: 16689845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of line stimulation-induced virtual electrodes and action potential prolongation in arrhythmic propagation.
    Baynham TC; Knisley SB
    J Cardiovasc Electrophysiol; 2001 Feb; 12(2):256-63. PubMed ID: 11370624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.