BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

932 related articles for article (PubMed ID: 12374857)

  • 21. Melatonin induces Cry1 expression in the pars tuberalis of the rat.
    Dardente H; Menet JS; Poirel VJ; Streicher D; Gauer F; Vivien-Roels B; Klosen P; Pévet P; Masson-Pévet M
    Brain Res Mol Brain Res; 2003 Jun; 114(2):101-6. PubMed ID: 12829319
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple effects of melatonin on rhythmic clock gene expression in the mammalian pars tuberalis.
    Johnston JD; Tournier BB; Andersson H; Masson-Pévet M; Lincoln GA; Hazlerigg DG
    Endocrinology; 2006 Feb; 147(2):959-65. PubMed ID: 16269454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoperiod differentially regulates the expression of Per1 and ICER in the pars tuberalis and the suprachiasmatic nucleus of the Siberian hamster.
    Messager S; Hazlerigg DG; Mercer JG; Morgan PJ
    Eur J Neurosci; 2000 Aug; 12(8):2865-70. PubMed ID: 10971629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of mCLOCK and other circadian clock-relevant proteins in the mouse suprachiasmatic nuclei.
    Maywood ES; O'Brien JA; Hastings MH
    J Neuroendocrinol; 2003 Apr; 15(4):329-34. PubMed ID: 12622829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular mechanisms of the biological clock in cultured fibroblasts.
    Yagita K; Tamanini F; van Der Horst GT; Okamura H
    Science; 2001 Apr; 292(5515):278-81. PubMed ID: 11303101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interacting molecular loops in the mammalian circadian clock.
    Shearman LP; Sriram S; Weaver DR; Maywood ES; Chaves I; Zheng B; Kume K; Lee CC; van der Horst GT; Hastings MH; Reppert SM
    Science; 2000 May; 288(5468):1013-9. PubMed ID: 10807566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Developmental expression of clock genes in the Syrian hamster.
    Li X; Davis FC
    Brain Res Dev Brain Res; 2005 Aug; 158(1-2):31-40. PubMed ID: 15987658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Circadian clockwork machinery in neural retina: evidence for the presence of functional clock components in photoreceptor-enriched chick retinal cell cultures.
    Chaurasia SS; Pozdeyev N; Haque R; Visser A; Ivanova TN; Iuvone PM
    Mol Vis; 2006 Mar; 12():215-23. PubMed ID: 16604054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dark pulse resetting of the suprachiasmatic clock in Syrian hamsters: behavioral phase-shifts and clock gene expression.
    Mendoza JY; Dardente H; Escobar C; Pevet P; Challet E
    Neuroscience; 2004; 127(2):529-37. PubMed ID: 15262341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synchronization of the molecular clockwork by light- and food-related cues in mammals.
    Challet E; Caldelas I; Graff C; Pévet P
    Biol Chem; 2003 May; 384(5):711-9. PubMed ID: 12817467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The rat circadian clockwork and its photoperiodic entrainment during development.
    Sumová A; Bendová Z; Sládek M; Kováciková Z; El-Hennamy R; Laurinová K; Illnerová H
    Chronobiol Int; 2006; 23(1-2):237-43. PubMed ID: 16687297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle.
    Mendoza J; Graff C; Dardente H; Pevet P; Challet E
    J Neurosci; 2005 Feb; 25(6):1514-22. PubMed ID: 15703405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clock genes in the heart: characterization and attenuation with hypertrophy.
    Young ME; Razeghi P; Taegtmeyer H
    Circ Res; 2001 Jun; 88(11):1142-50. PubMed ID: 11397780
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A role for cryptochromes in sleep regulation.
    Wisor JP; O'Hara BF; Terao A; Selby CP; Kilduff TS; Sancar A; Edgar DM; Franken P
    BMC Neurosci; 2002 Dec; 3():20. PubMed ID: 12495442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clock gene expression in the submandibular glands.
    Furukawa M; Kawamoto T; Noshiro M; Honda KK; Sakai M; Fujimoto K; Honma S; Honma K; Hamada T; Kato Y
    J Dent Res; 2005 Dec; 84(12):1193-7. PubMed ID: 16304453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Melatonin feedback on clock genes: a theory involving the proteasome.
    Vriend J; Reiter RJ
    J Pineal Res; 2015 Jan; 58(1):1-11. PubMed ID: 25369242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of circadian clock proteins PER2 and CRY with BMAL1 and CLOCK.
    Langmesser S; Tallone T; Bordon A; Rusconi S; Albrecht U
    BMC Mol Biol; 2008 Apr; 9():41. PubMed ID: 18430226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insight into the circadian clock within rat colonic epithelial cells.
    Sládek M; Rybová M; Jindráková Z; Zemanová Z; Polidarová L; Mrnka L; O'Neill J; Pácha J; Sumová A
    Gastroenterology; 2007 Oct; 133(4):1240-9. PubMed ID: 17675004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular characterization of the long-day response in the Soay sheep, a seasonal mammal.
    Hazlerigg DG; Andersson H; Johnston JD; Lincoln G
    Curr Biol; 2004 Feb; 14(4):334-9. PubMed ID: 14972686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clock genes in calendar cells as the basis of annual timekeeping in mammals--a unifying hypothesis.
    Lincoln GA; Andersson H; Loudon A
    J Endocrinol; 2003 Oct; 179(1):1-13. PubMed ID: 14529560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 47.