These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 12375119)

  • 1. Fate and toxicity of the algicide irgarol 1051: a marine microcosm study.
    Balcomb R; Hoberg JR; Giddings JM
    Bull Environ Contam Toxicol; 2002 Nov; 69(5):696-703. PubMed ID: 12375119
    [No Abstract]   [Full Text] [Related]  

  • 2. Evaluation of single and joint toxic effects of two antifouling biocides, their main metabolites and copper using phytoplankton bioassays.
    Gatidou G; Thomaidis NS
    Aquat Toxicol; 2007 Dec; 85(3):184-91. PubMed ID: 17942164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of dimethoate on primary productivity of a lentic aquatic ecosystem: a microcosm approach.
    Ratageri RH; Taranath TC; Lakshman HC
    Bull Environ Contam Toxicol; 2006 Mar; 76(3):373-80. PubMed ID: 16652248
    [No Abstract]   [Full Text] [Related]  

  • 4. Toxicities of antifouling biocide Irgarol 1051 and its major degraded product to marine primary producers.
    Zhang AQ; Leung KM; Kwok KW; Bao VW; Lam MH
    Mar Pollut Bull; 2008; 57(6-12):575-86. PubMed ID: 18314144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton.
    Wu Y; Wang WX
    Environ Pollut; 2011 Oct; 159(10):3097-105. PubMed ID: 21550705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term effects of the antifouling booster biocide Irgarol 1051 on periphyton, plankton and ecosystem function in freshwater pond mesocosms.
    Mohr S; Schröder H; Feibicke M; Berghahn R; Arp W; Nicklisch A
    Aquat Toxicol; 2008 Nov; 90(2):109-20. PubMed ID: 18817992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence and persistence of antifouling biocide Irgarol 1051 and its main metabolite in the coastal waters of Southern England.
    Zhou JL
    Sci Total Environ; 2008 Nov; 406(1-2):239-46. PubMed ID: 18789489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the effects of Irgarol 1051 on marine phytoplankton populations in Key Largo Harbor, Florida.
    Zamora-Ley IM; Gardinali PR; Jochem FJ
    Mar Pollut Bull; 2006 Aug; 52(8):935-41. PubMed ID: 16472825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of resuspending sediment contaminated with antifouling paint particles containing Irgarol 1051 on the marine macrophyte Ulva intestinalis.
    Tolhurst LE; Barry J; Dyer RA; Thomas KV
    Chemosphere; 2007 Jul; 68(8):1519-24. PubMed ID: 17482236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadmium in three marine phytoplankton: accumulation, subcellular fate and thiol induction.
    Wang MJ; Wang WX
    Aquat Toxicol; 2009 Nov; 95(2):99-107. PubMed ID: 19748136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sources, transport, fate, and toxicity of pollutants in the San Francisco Bay estuary.
    Flegal AR; Davis JA; Connor MS; Conaway CH
    Environ Res; 2007 Sep; 105(1):1-4. PubMed ID: 17692310
    [No Abstract]   [Full Text] [Related]  

  • 12. Fate and transport of Irgarol 1051 in a modular estuarine mesocosm.
    Sapozhnikova Y; Pennington P; Wirth E; Fulton M
    J Environ Monit; 2009 Apr; 11(4):808-14. PubMed ID: 19557235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of a PSII inhibitor on phytoplankton community structure as assessed by HPLC pigment analyses, microscopy and flow cytometry.
    Devilla RA; Brown MT; Donkin M; Readman JW
    Aquat Toxicol; 2005 Jan; 71(1):25-38. PubMed ID: 15642629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifouling biocides in water and sediments from California marinas.
    Sapozhnikova Y; Wirth E; Schiff K; Fulton M
    Mar Pollut Bull; 2013 Apr; 69(1-2):189-94. PubMed ID: 23453818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of microphytobenthos Cylindrotheca closterium on the fate of di-n-butyl phthalate in an aquatic microcosm.
    Zhang F; Ding Z; Gong H; Chi J
    Mar Pollut Bull; 2019 Mar; 140():101-106. PubMed ID: 30803623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Roundup on the marine microbial community, as shown by an in situ microcosm experiment.
    Stachowski-Haberkorn S; Becker B; Marie D; Haberkorn H; Coroller L; de la Broise D
    Aquat Toxicol; 2008 Sep; 89(4):232-41. PubMed ID: 18760491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixture toxicity of the antifouling compound irgarol to the marine phytoplankton species Dunaliella tertiolecta.
    DeLorenzo ME; Serrano L
    J Environ Sci Health B; 2006; 41(8):1349-60. PubMed ID: 17090497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate of Irgarol 1051, diuron and their main metabolites in two UK marine systems after restrictions in antifouling paints.
    Gatidou G; Thomaidis NS; Zhou JL
    Environ Int; 2007 Jan; 33(1):70-7. PubMed ID: 16904183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking losses of brevetoxins on exposure to phytoplankton competitors: Mechanistic insights.
    Redshaw CH; Sutter D; Myers TL; Naar J; Kubanek J
    Aquat Toxicol; 2010 Nov; 100(4):365-72. PubMed ID: 20863581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecological risk of Irgarol 1051 and its major metabolite in coastal California marinas and reference areas.
    Hall LW; Killen WD; Anderson RD; Balcomb R; Gardinali P
    Mar Pollut Bull; 2009 May; 58(5):702-10. PubMed ID: 19178917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.