BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12375911)

  • 1. Synthesis of the C10-C22 bis-spiroacetal domain of spirolides B and D via iterative oxidative radical cyclization.
    Furkert DP; Brimble MA
    Org Lett; 2002 Oct; 4(21):3655-8. PubMed ID: 12375911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of the bis-spiroacetal moiety of spirolides B and D.
    Meilert K; Brimble MA
    Org Lett; 2005 Aug; 7(16):3497-500. PubMed ID: 16048326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of the bis-spiroacetal moiety of the shellfish toxins spirolides B and D using an iterative oxidative radical cyclization strategy.
    Meilert K; Brimble MA
    Org Biomol Chem; 2006 Jun; 4(11):2184-92. PubMed ID: 16729128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radical oxidative cyclization of spiroacetals to bis-spiroacetals: an overview.
    Brimble MA
    Molecules; 2004 May; 9(6):394-404. PubMed ID: 18007440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of the 1,6,8-trioxadispiro[4.1.5.2]tetradec-11-ene ring system present in the spirolide family of shellfish toxins and its conversion into a 1,6,8-trioxadispiro[4.1.5.2]-tetradec-9-en-12-ol via base-induced rearrangement of an epoxide.
    Brimble MA; Furkert DP
    Org Biomol Chem; 2004 Dec; 2(24):3573-83. PubMed ID: 15592615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concise synthesis of the C15-C38 fragment of okadaic acid: application of the Suzuki-Miyaura reaction to spiroacetal synthesis.
    Fuwa H; Sakamoto K; Muto T; Sasaki M
    Org Lett; 2015 Jan; 17(2):366-9. PubMed ID: 25544331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of the C10-C24-bis-spiroacetal core of 13-desmethyl spirolide C based on a sila-Stetter-acetalization process.
    Labarre-Lainé J; Periñan I; Desvergnes V; Landais Y
    Chemistry; 2014 Jul; 20(30):9336-41. PubMed ID: 24925107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative carbon-carbon bond cleavage is a key step in spiroacetal biosynthesis in the fruit fly Bactrocera cacuminata.
    Singh AA; Rowley JA; Schwartz BD; Kitching W; De Voss JJ
    J Org Chem; 2014 Sep; 79(17):7799-821. PubMed ID: 24914610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spiroacetal formation through telescoped cycloaddition and carbon-hydrogen bond functionalization: total synthesis of bistramide A.
    Han X; Floreancig PE
    Angew Chem Int Ed Engl; 2014 Oct; 53(41):11075-8. PubMed ID: 25196585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational synthesis of contra-thermodynamic spiroacetals by reductive cyclizations.
    Takaoka LR; Buckmelter AJ; LaCruz TE; Rychnovsky SD
    J Am Chem Soc; 2005 Jan; 127(2):528-9. PubMed ID: 15643869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of spiroacetal-nucleosides as privileged natural product-like scaffolds.
    Choi KW; Brimble MA
    Org Biomol Chem; 2009 Apr; 7(7):1424-36. PubMed ID: 19300829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of stereoisomers of Artemisia and Chrysanthemum bis(acetylenic) enol ether spiroacetals.
    Wu B; Feast GC; Thompson AL; Robertson J
    J Org Chem; 2012 Dec; 77(23):10623-30. PubMed ID: 23113738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of spiro-bisperoxyketals.
    Ghorai P; Dussault PH; Hu C
    Org Lett; 2008 Jun; 10(12):2401-4. PubMed ID: 18476703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward the synthesis of spirastrellolide a: construction of a tetracyclic C26-C40 subunit containing the DEF-bis-spiroacetal.
    Paterson I; Anderson EA; Dalby SM; Loiseleur O
    Org Lett; 2005 Sep; 7(19):4121-4. PubMed ID: 16146367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A catalytic multicomponent coupling reaction for the enantioselective synthesis of spiroacetals.
    Cala L; Mendoza A; Fañanás FJ; Rodríguez F
    Chem Commun (Camb); 2013 Apr; 49(26):2715-7. PubMed ID: 23435368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An approach toward constructing the trioxadispiroketal core in the DEF-ring of (+)-spirastrellolide A.
    Wu YB; Tang Y; Luo GY; Chen Y; Hsung RP
    Org Lett; 2014 Sep; 16(17):4550-3. PubMed ID: 25121803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereoselective synthesis of the lituarine tricyclic spiroacetal.
    Robertson J; Meo P; Dallimore JW; Doyle BM; Hoarau C
    Org Lett; 2004 Oct; 6(21):3861-3. PubMed ID: 15469368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergent One-Pot Oxidative [n + 1] Approaches to Spiroacetal Synthesis.
    Peh G; Floreancig PE
    Org Lett; 2015 Aug; 17(15):3750-3. PubMed ID: 26196213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formal total synthesis of spirangien A.
    Gregg C; Gunawan C; Ng AW; Wimala S; Wickremasinghe S; Rizzacasa MA
    Org Lett; 2013 Feb; 15(3):516-9. PubMed ID: 23320507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convergent assembly of the spiroacetal subunit of didemnaketal B.
    Fuwa H; Noji S; Sasaki M
    Org Lett; 2010 Nov; 12(22):5354-7. PubMed ID: 21028885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.