These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12375954)

  • 41. De novo asymmetric syntheses of D- and L-talose via an iterative dihydroxylation of dienoates.
    Ahmed MM; O'Doherty GA
    J Org Chem; 2005 Dec; 70(25):10576-8. PubMed ID: 16323875
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Concise synthesis of arnottin I and (-)-arnottin II.
    Konno F; Ishikawa T; Kawahata M; Yamaguchi K
    J Org Chem; 2006 Dec; 71(26):9818-23. PubMed ID: 17168601
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Total synthesis of leustroducsin B.
    Miyashita K; Tsunemi T; Hosokawa T; Ikejiri M; Imanishi T
    J Org Chem; 2008 Jul; 73(14):5360-70. PubMed ID: 18549287
    [TBL] [Abstract][Full Text] [Related]  

  • 44. De novo synthesis of 2-substituted syn-1,3-diols via an iterative asymmetric hydration strategy.
    Ahmed MM; Mortensen MS; O'Doherty GA
    J Org Chem; 2006 Sep; 71(20):7741-6. PubMed ID: 16995681
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamic Kinetic Resolution of Allylic Azides via Asymmetric Dihydroxylation.
    Ott AA; Goshey CS; Topczewski JJ
    J Am Chem Soc; 2017 Jun; 139(23):7737-7740. PubMed ID: 28574252
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modification of chiral dimethyl tartrate through transesterification: immobilization on POSS and enantioselectivity reversal in sharpless asymmetric epoxidation.
    García RA; Van Grieken R; Iglesias J; Sherrington DC; Gibson CL
    Chirality; 2010 Jul; 22(7):675-83. PubMed ID: 20014038
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Sharpless asymmetric aminohydroxylation reaction: optimising ligand/substrate control of regioselectivity for the synthesis of 3- and 4-aminosugars.
    Bodkin JA; Bacskay GB; McLeod MD
    Org Biomol Chem; 2008 Jul; 6(14):2544-53. PubMed ID: 18600276
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catalyst Optimisation for Asymmetric Synthesis by Ligand Chirality Element Addition: A Perspective on Stereochemical Cooperativity.
    Richards CJ; Arthurs RA
    Chemistry; 2017 Aug; 23(48):11460-11478. PubMed ID: 28419592
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Desymmetrization of hydrazinocyclohexadienes: a new approach for the synthesis of polyhydroxylated aminocyclohexanes.
    Errasti G; Koundé C; Mirguet O; Lecourt T; Micouin L
    Org Lett; 2009 Jul; 11(13):2912-5. PubMed ID: 19469517
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis of the macrocyclic core of iriomoteolide 3a.
    Reddy CR; Dharmapuri G; Rao NN
    Org Lett; 2009 Dec; 11(24):5730-3. PubMed ID: 19928780
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis of the DEF-bis-spiroacetal of spirastrellolide A exploiting a double asymmetric dihydroxylation/spiroacetalisation strategy.
    Paterson I; Anderson EA; Dalby SM; Lim JH; Maltas P; Moessner C
    Chem Commun (Camb); 2006 Oct; (40):4186-8. PubMed ID: 17031426
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transition State Models for Understanding the Origin of Chiral Induction in Asymmetric Catalysis.
    Sunoj RB
    Acc Chem Res; 2016 May; 49(5):1019-28. PubMed ID: 27101013
    [TBL] [Abstract][Full Text] [Related]  

  • 53. De novo asymmetric syntheses of muricatacin and its analogues via dihydroxylation of dienoates.
    Ahmed MM; Cui H; O'Doherty GA
    J Org Chem; 2006 Aug; 71(17):6686-9. PubMed ID: 16901173
    [TBL] [Abstract][Full Text] [Related]  

  • 54. De novo asymmetric syntheses of C-4-substituted sugars via an iterative dihydroxylation strategy.
    Ahmed MM; O'Doherty GA
    Carbohydr Res; 2006 Jul; 341(10):1505-21. PubMed ID: 16616898
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Catalytic asymmetric dihydroxylation of 1-substituted-1-ferrocenylethenes: an enantioselective entry to chiral tertiary ferrocenylcarbinols and ferrocenylalkylamines.
    Moreno RM; Bueno A; Moyano A
    J Org Chem; 2006 Mar; 71(6):2528-31. PubMed ID: 16526811
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ionic liquids as a convenient new medium for the catalytic asymmetric dihydroxylation of olefins using a recoverable and reusable osmium/ligand.
    Branco LC; Afonso CA
    J Org Chem; 2004 Jun; 69(13):4381-9. PubMed ID: 15202893
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Searching for new reactivity (Nobel lecture).
    Sharpless KB
    Angew Chem Int Ed Engl; 2002 Jun; 41(12):2024-32. PubMed ID: 19746596
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sharpless asymmetric dihydroxylation of trans-propenylphosphonate by using a modified AD-mix-alpha and the synthesis of fosfomycin.
    Kobayashi Y; William AD; Tokoro Y
    J Org Chem; 2001 Nov; 66(23):7903-6. PubMed ID: 11701057
    [No Abstract]   [Full Text] [Related]  

  • 59. A QM/MM study of the asymmetric dihydroxylation of terminal aliphatic n-alkenes with OsO4.(DHQD)2PYDZ: enantioselectivity as a function of chain length.
    Drudis-Solé G; Ujaque G; Maseras F; Lledós A
    Chemistry; 2005 Jan; 11(3):1017-29. PubMed ID: 15614871
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Catalytic asymmetric dihydroxylation of olefins with reusable OsO(4)(2-) on ion-exchangers: the scope and reactivity using various cooxidants.
    Choudary BM; Chowdari NS; Jyothi K; Kantam ML
    J Am Chem Soc; 2002 May; 124(19):5341-9. PubMed ID: 11996575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.