These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 12376004)
1. Cavitation versus degassing: in vitro study of the microbubble phenomenon observed during echocardiography in patients with mechanical prosthetic cardiac valves. Girod G; Jaussi A; Rosset C; De Werra P; Hirt F; Kappenberger L Echocardiography; 2002 Oct; 19(7 Pt 1):531-6. PubMed ID: 12376004 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms of cavitation and the formation of stable bubbles on the Björk-Shiley Monostrut prosthetic heart valve. Bachmann C; Kini V; Deutsch S; Fontaine AA; Tarbell JM J Heart Valve Dis; 2002 Jan; 11(1):105-13. PubMed ID: 11843495 [TBL] [Abstract][Full Text] [Related]
4. A physical model describing the mechanism for formation of gas microbubbles in patients with mitral mechanical heart valves. Rambod E; Beizaie M; Shusser M; Milo S; Gharib M Ann Biomed Eng; 1999; 27(6):774-92. PubMed ID: 10625150 [TBL] [Abstract][Full Text] [Related]
5. Transcranial Doppler and acoustic pressure fluctuations for the assessment of cavitation and thromboembolism in patients with mechanical heart valves. Rodriguez RA; Ruel M; Labrosse M; Mesana T Interact Cardiovasc Thorac Surg; 2008 Apr; 7(2):179-83. PubMed ID: 18056151 [TBL] [Abstract][Full Text] [Related]
6. Observation and quantification of gas bubble formation on a mechanical heart valve. Lin HY; Bianccucci BA; Deutsch S; Fontaine AA; Tarbell JM J Biomech Eng; 2000 Aug; 122(4):304-9. PubMed ID: 11036552 [TBL] [Abstract][Full Text] [Related]
7. In vitro studies of gas bubble formation by mechanical heart valves. Biancucci BA; Deutsch S; Geselowitz DB; Tarbell JM J Heart Valve Dis; 1999 Mar; 8(2):186-96. PubMed ID: 10224580 [TBL] [Abstract][Full Text] [Related]
8. Mitral mechanical heart valves: in vitro studies of their closure, vortex and microbubble formation with possible medical implications. Milo S; Rambod E; Gutfinger C; Gharib M Eur J Cardiothorac Surg; 2003 Sep; 24(3):364-70. PubMed ID: 12965306 [TBL] [Abstract][Full Text] [Related]
9. Microbubbles and mitral valve prostheses - transesophageal echocardiographic evaluation. Levy DJ; Child JS; Rambod E; Gharib M; Milo S; Reisner SA Eur J Ultrasound; 1999 Sep; 10(1):31-40. PubMed ID: 10502637 [TBL] [Abstract][Full Text] [Related]
13. Cavitation phenomenon in monoleaflet mechanical heart valves with electrohydraulic total artificial heart. Lee H; Taenaka Y; Kitamura S Int J Artif Organs; 2004 Sep; 27(9):779-86. PubMed ID: 15521218 [TBL] [Abstract][Full Text] [Related]
14. Role of vortices in cavitation formation in the flow across a mechanical heart valve. Li CP; Lu PC; Liu JS; Lo CW; Hwang NH J Heart Valve Dis; 2008 Jul; 17(4):435-45. PubMed ID: 18751474 [TBL] [Abstract][Full Text] [Related]
15. Gas bubble emboli detected by transcranial Doppler sonography in patients with prosthetic heart valves: a preliminary report. Dauzat M; Deklunder G; Aldis A; Rabinovitch M; Burte F; Bret PM J Ultrasound Med; 1994 Feb; 13(2):129-35. PubMed ID: 7932957 [TBL] [Abstract][Full Text] [Related]
16. Intraoperative and postoperative evaluation of cavitation in mechanical heart valve patients. Andersen TS; Johansen P; Christensen BO; Paulsen PK; Nygaard H; Hasenkam JM Ann Thorac Surg; 2006 Jan; 81(1):34-41. PubMed ID: 16368331 [TBL] [Abstract][Full Text] [Related]
17. A method to distinguish between gaseous and solid cerebral emboli in patients with prosthetic heart valves. Rodriguez RA; Nathan HJ; Ruel M; Rubens F; Dafoe D; Mesana T Eur J Cardiothorac Surg; 2009 Jan; 35(1):89-95. PubMed ID: 18952455 [TBL] [Abstract][Full Text] [Related]