These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12376420)

  • 1. Oxygen-limited thermal tolerance in Antarctic fish investigated by MRI and (31)P-MRS.
    Mark FC; Bock C; Pörtner HO
    Am J Physiol Regul Integr Comp Physiol; 2002 Nov; 283(5):R1254-62. PubMed ID: 12376420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen limitation of thermal tolerance in cod, Gadus morhua L., studied by magnetic resonance imaging and on-line venous oxygen monitoring.
    Lannig G; Bock C; Sartoris FJ; Pörtner HO
    Am J Physiol Regul Integr Comp Physiol; 2004 Oct; 287(4):R902-10. PubMed ID: 15205188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen limited thermal tolerance in fish?--Answers obtained by nuclear magnetic resonance techniques.
    Pörtner HO; Mark FC; Bock C
    Respir Physiol Neurobiol; 2004 Aug; 141(3):243-60. PubMed ID: 15288597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals.
    Pörtner HO
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Aug; 132(4):739-61. PubMed ID: 12095860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperoxia increases maximum oxygen consumption and aerobic scope of intertidal fish facing acutely high temperatures.
    McArley TJ; Hickey AJR; Herbert NA
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30254026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence.
    Verberk WC; Overgaard J; Ern R; Bayley M; Wang T; Boardman L; Terblanche JS
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Feb; 192():64-78. PubMed ID: 26506130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-energy turnover at low temperatures: recovery from exhaustive exercise in Antarctic and temperate eelpouts.
    Hardewig I; Van Dijk PL; Portner HO
    Am J Physiol; 1998 Jun; 274(6):R1789-96. PubMed ID: 9841552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic experimental hyperoxia elevates aerobic scope: a valid method to test for physiological oxygen limitations in fish.
    Skeeles MR; Scheuffele H; Clark TD
    J Fish Biol; 2022 Dec; 101(6):1595-1600. PubMed ID: 36069991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological disturbances at critically high temperatures: a comparison between stenothermal antarctic and eurythermal temperate eelpouts (Zoarcidae).
    van Dijk PL ; Tesch C; Hardewig I; Portner HO
    J Exp Biol; 1999 Dec; 202 Pt 24():3611-21. PubMed ID: 10574738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperoxia Does Not Extend Critical Thermal Maxima (CTmax) in White- or Red-Blooded Antarctic Notothenioid Fishes.
    Devor DP; Kuhn DE; O'Brien KM; Crockett EL
    Physiol Biochem Zool; 2016; 89(1):1-9. PubMed ID: 27082520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view.
    Pörtner HO; Peck L; Somero G
    Philos Trans R Soc Lond B Biol Sci; 2007 Dec; 362(1488):2233-58. PubMed ID: 17553776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hyperoxia on the metabolic response to cold of the newborn rat.
    Dotta A; Mortola JP
    J Dev Physiol; 1992 May; 17(5):247-50. PubMed ID: 1460249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado.
    Frederich M; Pörtner HO
    Am J Physiol Regul Integr Comp Physiol; 2000 Nov; 279(5):R1531-8. PubMed ID: 11049833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP.
    González-Alonso J; Olsen DB; Saltin B
    Circ Res; 2002 Nov; 91(11):1046-55. PubMed ID: 12456491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal acclimation in Antarctic fish: transcriptomic profiling of metabolic pathways.
    Windisch HS; Kathöver R; Pörtner HO; Frickenhaus S; Lucassen M
    Am J Physiol Regul Integr Comp Physiol; 2011 Nov; 301(5):R1453-66. PubMed ID: 21865546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pragmatic perspective on aerobic scope: peaking, plummeting, pejus and apportioning.
    Farrell AP
    J Fish Biol; 2016 Jan; 88(1):322-43. PubMed ID: 26592201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy budget of hepatocytes from Antarctic fish (Pachycara brachycephalum and Lepidonotothen kempi) as a function of ambient CO2: pH-dependent limitations of cellular protein biosynthesis?
    Langenbuch M; Pörtner HO
    J Exp Biol; 2003 Nov; 206(Pt 22):3895-903. PubMed ID: 14555731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress response or beneficial temperature acclimation: transcriptomic signatures in Antarctic fish (Pachycara brachycephalum).
    Windisch HS; Frickenhaus S; John U; Knust R; Pörtner HO; Lucassen M
    Mol Ecol; 2014 Jul; 23(14):3469-82. PubMed ID: 24897925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental hyperoxia (O
    McArley TJ; Morgenroth D; Zena LA; Ekström AT; Sandblom E
    Biol Lett; 2022 Nov; 18(11):20220401. PubMed ID: 36321431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature tolerance of some Antarctic fishes.
    Somero GN; DeVries AL
    Science; 1967 Apr; 156(3772):257-8. PubMed ID: 6021046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.