BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 123766)

  • 1. Energy transduction in photosynthetic bacteria. VIII. Activation of the energy-transducing ATPase by inorganic phosphate.
    Melandri AB; Fabbri E; Melandri BA
    Biochim Biophys Acta; 1975 Jan; 376(1):82-8. PubMed ID: 123766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy transduction in photosynthetic bacteria. VII. Inhibition of the coupling ATPase by N-ethylmaleimide related to the energized state of the membrane.
    Melandri AB; Fabbri E; Firstater E; Melandri BA
    Biochim Biophys Acta; 1975 Jan; 376(1):72-81. PubMed ID: 123765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy transduction in photosynthetic bacteria. IV. Light-dependent ATPase in photosynthetic membranes from Rhodopseudomonas capsulata.
    Melandri BA; Baccarini-Melandri A; Fabbri E
    Biochim Biophys Acta; 1972 Sep; 275(3):383-94. PubMed ID: 4262690
    [No Abstract]   [Full Text] [Related]  

  • 4. The effects of phosphate and electron transport on the carbonyl cyanide m-chlorophenylhydrazone-induced ATPase of rat-liver mitochondria.
    Bertina RM; Slater EC
    Biochim Biophys Acta; 1975 Mar; 376(3):492-504. PubMed ID: 123770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical potential changes, H+ translocation and phosphorylation induced by short flash excitation in Rhodopseudomonas sphaeroides chromatophores.
    Saphon S; Jackson JB; Witt HT
    Biochim Biophys Acta; 1975 Oct; 408(1):67-82. PubMed ID: 240444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoinactivation of photophosphorylation and dark ATPase in Rhodospirillum rubrum chromatophores.
    Slooten L; Sybesma C
    Biochim Biophys Acta; 1976 Dec; 449(3):565-80. PubMed ID: 11818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of phosphorylation coupling factor in light-dependent proton translocation by Rhodopseudomonas capsulata membrane preparations.
    Melandri BA; Baccarini-Melandri A; San Pietro A; Gest H
    Proc Natl Acad Sci U S A; 1970 Oct; 67(2):477-84. PubMed ID: 5002093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational and physiological enhancement of photosynthetic energy conversion in Rhodopseudomonas capsulata.
    Lien S; San Pietro A; Gest H
    Proc Natl Acad Sci U S A; 1971 Aug; 68(8):1912-5. PubMed ID: 5288777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tightly bound nucleotides of the energy-transducing ATPase of chloroplasts and their role in photophosphorylation.
    Harris DA; Slater ED
    Biochim Biophys Acta; 1975 May; 387(2):335-48. PubMed ID: 123785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stimulation of photophosphorylation and ATPase by artificial redox mediators in chromatophores of Rhodopseudomonas capsulata at different redox potentials.
    Baccarini-Melandri A; Melandri BA; Hauska G
    J Bioenerg Biomembr; 1979 Apr; 11(1-2):1-16. PubMed ID: 162342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localized energy coupling during photophosphorylation by chromatophores of Rhodopseudomonas capsulata N22.
    Hitchens GD; Kell DB
    Biosci Rep; 1982 Oct; 2(10):743-9. PubMed ID: 6293600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of proton translocation induced by ATPase activity in chloroplasts.
    Carmeli C; Lifshitz Y; Gepshtein A
    Biochim Biophys Acta; 1975 Feb; 376(2):249-58. PubMed ID: 234748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of photophosphorylation by ATP and the role of magnesium in photophosphorylation.
    Komatsu M; Murakami S
    Biochim Biophys Acta; 1976 Jan; 423(1):103-10. PubMed ID: 1247601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two types of kinetic regulation of the activated ATPase in the chloroplast photophosphorylation system.
    Sherman PA; Wimmer MJ
    J Biol Chem; 1982 Jun; 257(12):7012-7. PubMed ID: 6211439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible mechanism of photophosphorylation in Rhodopseudomonas viridis.
    Kerber NL; Pucheu NL; García AP
    Acta Physiol Lat Am; 1976; 26(5):337-42. PubMed ID: 1052599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the effects of NN'-dicyclohexylcarbodi-imide, oligomycin A and aurovertin on enrgy-linked reactions in mitochondria and submitochondrial particles.
    Roberton AM; Holloway CT; Knight IG; Beechey RB
    Biochem J; 1968 Jul; 108(3):445-56. PubMed ID: 4299126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delayed light studies on photosynthetic energy conversion. VIII. Evidence from millisecond emission of chloroplasts for two adenylate binding sites on membrane-bound coupling factor, CF1.
    Vambutas V; Bertsch W
    Biochim Biophys Acta; 1975 Jan; 376(1):169-79. PubMed ID: 235980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfite and membrane energization induce two different active states of the Paracoccus denitrificans F0F1-ATPase.
    Pacheco-Moisés F; García JJ; Rodríguez-Zavala JS; Moreno-Sánchez R
    Eur J Biochem; 2000 Feb; 267(4):993-1000. PubMed ID: 10672007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the extent of localization of the energized membrane state in chromatophores from Rhodopseudomonas capsulata N22.
    Hitchens GD; Kell DB
    Biochem J; 1982 Aug; 206(2):351-7. PubMed ID: 7150247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy-linked pyridine nucleotide transhydrogenase activity in photosynthetically grown Rhodopseudomonas palustris.
    Knobloch K
    Z Naturforsch C Biosci; 1975; 30(6):771-6. PubMed ID: 3049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.