These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12377046)

  • 21. Investigation of metal ion binding in phosphonoacetaldehyde hydrolase identifies sequence markers for metal-activated enzymes of the HAD enzyme superfamily.
    Zhang G; Morais MC; Dai J; Zhang W; Dunaway-Mariano D; Allen KN
    Biochemistry; 2004 May; 43(17):4990-7. PubMed ID: 15109258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. KEY, LOCK, and LOCKSMITH: complementary hydropathic map predictions of drug structure from a known receptor-receptor structure from known drugs.
    Kellogg GE; Abraham DJ
    J Mol Graph; 1992 Dec; 10(4):212-7, 226. PubMed ID: 1476993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. De novo design of peptide scaffolds as novel preorganized ligands for metal-ion coordination.
    Gamble AJ; Peacock AF
    Methods Mol Biol; 2014; 1216():211-31. PubMed ID: 25213418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Receptor-based pharmacophore tool for design and development of next-generation drugs.
    Udayakumar M; Kumar PS; Hemavathi K; Shanmugapriya P; Seenivasagam R
    Int J Bioinform Res Appl; 2013; 9(5):487-516. PubMed ID: 24001724
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational approaches for
    Akcapinar GB; Sezerman OU
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28167677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Receptor surface models. 1. Definition and construction.
    Hahn M
    J Med Chem; 1995 Jun; 38(12):2080-90. PubMed ID: 7783139
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure-based design technology contour and its application to the design of renin inhibitors.
    Ishchenko A; Liu Z; Lindblom P; Wu G; Jim KC; Gregg RD; Claremon DA; Singh SB
    J Chem Inf Model; 2012 Aug; 52(8):2089-97. PubMed ID: 22805048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal ions and phosphate binding in the H-N-H motif: crystal structures of the nuclease domain of ColE7/Im7 in complex with a phosphate ion and different divalent metal ions.
    Sui MJ; Tsai LC; Hsia KC; Doudeva LG; Ku WY; Han GW; Yuan HS
    Protein Sci; 2002 Dec; 11(12):2947-57. PubMed ID: 12441392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cooperative metal ion binding to a cucurbit[7]uril-thioflavin T complex: demonstration of a stimulus-responsive fluorescent supramolecular capsule.
    Choudhury SD; Mohanty J; Pal H; Bhasikuttan AC
    J Am Chem Soc; 2010 Feb; 132(4):1395-401. PubMed ID: 20058859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High Resolution Prediction of Calcium-Binding Sites in 3D Protein Structures Using FEATURE.
    Zhou W; Tang GW; Altman RB
    J Chem Inf Model; 2015 Aug; 55(8):1663-72. PubMed ID: 26226489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural insights into protein-metal ion partnerships.
    Barondeau DP; Getzoff ED
    Curr Opin Struct Biol; 2004 Dec; 14(6):765-74. PubMed ID: 15582401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Peptide mimics by linear arylamides: a structural and functional diversity test.
    Li ZT; Hou JL; Li C
    Acc Chem Res; 2008 Oct; 41(10):1343-53. PubMed ID: 18361513
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein-protein binding sites prediction by 3D structural similarities.
    Guo F; Li SC; Wang L
    J Chem Inf Model; 2011 Dec; 51(12):3287-94. PubMed ID: 22077765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of thiolate rich metal binding sites within a peptidic framework.
    Łuczkowski M; Stachura M; Schirf V; Demeler B; Hemmingsen L; Pecoraro VL
    Inorg Chem; 2008 Dec; 47(23):10875-88. PubMed ID: 18959366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Apoprotein Structure and Metal Binding Characterization of a de Novo Designed Peptide, α3DIV, that Sequesters Toxic Heavy Metals.
    Plegaria JS; Dzul SP; Zuiderweg ER; Stemmler TL; Pecoraro VL
    Biochemistry; 2015 May; 54(18):2858-73. PubMed ID: 25790102
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal search: a computer program that helps design tetrahedral metal-binding sites.
    Clarke ND; Yuan SM
    Proteins; 1995 Oct; 23(2):256-63. PubMed ID: 8592706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design, folding, and activities of metal-assembled coiled coil proteins.
    Doerr AJ; McLendon GL
    Inorg Chem; 2004 Dec; 43(25):7916-25. PubMed ID: 15578825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNA splicing: group I intron crystal structures reveal the basis of splice site selection and metal ion catalysis.
    Stahley MR; Strobel SA
    Curr Opin Struct Biol; 2006 Jun; 16(3):319-26. PubMed ID: 16697179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conservation of helical structure contributes to functional metal ion interactions in the catalytic domain of ribonuclease P RNA.
    Kaye NM; Zahler NH; Christian EL; Harris ME
    J Mol Biol; 2002 Nov; 324(3):429-42. PubMed ID: 12445779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal-ion sites as structural and functional probes of helix-helix interactions in 7TM receptors.
    Elling CE; Thirstrup K; Nielsen SM; Hjorth SA; Schwartz TW
    Ann N Y Acad Sci; 1997 Apr; 814():142-51. PubMed ID: 9160966
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.