These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65. Recombinant multiepitope proteins expressed in Escherichia coli cells and their potential for immunodiagnosis. Gonçalves AAM; Ribeiro AJ; Resende CAA; Couto CAP; Gandra IB; Dos Santos Barcelos IC; da Silva JO; Machado JM; Silva KA; Silva LS; Dos Santos M; da Silva Lopes L; de Faria MT; Pereira SP; Xavier SR; Aragão MM; Candida-Puma MA; de Oliveira ICM; Souza AA; Nogueira LM; da Paz MC; Coelho EAF; Giunchetti RC; de Freitas SM; Chávez-Fumagalli MA; Nagem RAP; Galdino AS Microb Cell Fact; 2024 May; 23(1):145. PubMed ID: 38778337 [TBL] [Abstract][Full Text] [Related]
66. Computational Modeling of Supramolecular Metallo-organic Cages-Challenges and Opportunities. Piskorz TK; Martí-Centelles V; Young TA; Lusby PJ; Duarte F ACS Catal; 2022 May; 12(10):5806-5826. PubMed ID: 35633896 [TBL] [Abstract][Full Text] [Related]
67. Unlocking the computational design of metal-organic cages. Tarzia A; Jelfs KE Chem Commun (Camb); 2022 Mar; 58(23):3717-3730. PubMed ID: 35229861 [TBL] [Abstract][Full Text] [Related]
68. Applied machine learning for predicting the lanthanide-ligand binding affinities. Chaube S; Goverapet Srinivasan S; Rai B Sci Rep; 2020 Aug; 10(1):14322. PubMed ID: 32868845 [TBL] [Abstract][Full Text] [Related]
69. An evolutionary algorithm for the discovery of porous organic cages. Berardo E; Turcani L; Miklitz M; Jelfs KE Chem Sci; 2018 Dec; 9(45):8513-8527. PubMed ID: 30568775 [TBL] [Abstract][Full Text] [Related]
70. stk: A python toolkit for supramolecular assembly. Turcani L; Berardo E; Jelfs KE J Comput Chem; 2018 Sep; 39(23):1931-1942. PubMed ID: 30247770 [TBL] [Abstract][Full Text] [Related]
71. Computational approaches for Akcapinar GB; Sezerman OU Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28167677 [TBL] [Abstract][Full Text] [Related]
72. DFT modeling on the suitable crown ether architecture for complexation with Cs⁺ and Sr²⁺ metal ions. Boda A; Ali SM; Shenoi MR; Rao H; Ghosh SK J Mol Model; 2011 May; 17(5):1091-108. PubMed ID: 20676707 [TBL] [Abstract][Full Text] [Related]
73. Theory of free energy and entropy in noncovalent binding. Zhou HX; Gilson MK Chem Rev; 2009 Sep; 109(9):4092-107. PubMed ID: 19588959 [No Abstract] [Full Text] [Related]
74. Host-guest complexes with protein-ligand-like affinities: computational analysis and design. Moghaddam S; Inoue Y; Gilson MK J Am Chem Soc; 2009 Mar; 131(11):4012-21. PubMed ID: 19133781 [TBL] [Abstract][Full Text] [Related]
76. HostDesigner: a program for the de novo structure-based design of molecular receptors with binding sites that complement metal ion guests. Hay BP; Firman TK Inorg Chem; 2002 Oct; 41(21):5502-12. PubMed ID: 12377046 [TBL] [Abstract][Full Text] [Related]
77. De novo structure-based design of bisurea hosts for tetrahedral oxoanion guests. Bryantsev VS; Hay BP J Am Chem Soc; 2006 Feb; 128(6):2035-42. PubMed ID: 16464105 [TBL] [Abstract][Full Text] [Related]
78. De novo structure-based design of bis-amidoxime uranophiles. Vukovic S; Hay BP Inorg Chem; 2013 Jul; 52(13):7805-10. PubMed ID: 24004288 [TBL] [Abstract][Full Text] [Related]
79. Search for improved host architectures: application of de novo structure-based design and high-throughput screening methods to identify optimal building blocks for multidentate ethers. Hay BP; Oliferenko AA; Uddin J; Zhang C; Firman TK J Am Chem Soc; 2005 Dec; 127(48):17043-53. PubMed ID: 16316251 [TBL] [Abstract][Full Text] [Related]