BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 12377129)

  • 1. Sequence and structural differences between enzyme and nonenzyme homologs.
    Todd AE; Orengo CA; Thornton JM
    Structure; 2002 Oct; 10(10):1435-51. PubMed ID: 12377129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nature of Long-Range Evolutionary Constraint in Enzymes: Insights from Comparison to Pseudoenzymes with Similar Structures.
    Sharir-Ivry A; Xia Y
    Mol Biol Evol; 2018 Nov; 35(11):2597-2606. PubMed ID: 30202983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of function in protein superfamilies, from a structural perspective.
    Todd AE; Orengo CA; Thornton JM
    J Mol Biol; 2001 Apr; 307(4):1113-43. PubMed ID: 11286560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalysing new reactions during evolution: economy of residues and mechanism.
    Bartlett GJ; Borkakoti N; Thornton JM
    J Mol Biol; 2003 Aug; 331(4):829-60. PubMed ID: 12909013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic and binding poly-reactivities shared by two unrelated proteins: The potential role of promiscuity in enzyme evolution.
    James LC; Tawfik DS
    Protein Sci; 2001 Dec; 10(12):2600-7. PubMed ID: 11714928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered conformational sampling along an evolutionary trajectory changes the catalytic activity of an enzyme.
    Kaczmarski JA; Mahawaththa MC; Feintuch A; Clifton BE; Adams LA; Goldfarb D; Otting G; Jackson CJ
    Nat Commun; 2020 Nov; 11(1):5945. PubMed ID: 33230119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary information hidden in a single protein structure.
    Shih CH; Chang CM; Lin YS; Lo WC; Hwang JK
    Proteins; 2012 Jun; 80(6):1647-57. PubMed ID: 22454236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular and structural basis of drift in the functions of closely-related homologous enzyme domains: implications for function annotation based on homology searches and structural genomics.
    Roy A; Srinivasan N; Gowri VS
    In Silico Biol; 2009; 9(1-2):S41-55. PubMed ID: 19537164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity of enzyme active sites.
    Todd AE; Orengo CA; Thornton JM
    Trends Biochem Sci; 2002 Aug; 27(8):419-26. PubMed ID: 12151227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A global analysis of function and conservation of catalytic residues in enzymes.
    Ribeiro AJM; Tyzack JD; Borkakoti N; Holliday GL; Thornton JM
    J Biol Chem; 2020 Jan; 295(2):314-324. PubMed ID: 31796628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-Zombie: the rise of pseudoenzymes in biology.
    Murphy JM; Farhan H; Eyers PA
    Biochem Soc Trans; 2017 Apr; 45(2):537-544. PubMed ID: 28408493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of enzyme function based on 3D templates of evolutionarily important amino acids.
    Kristensen DM; Ward RM; Lisewski AM; Erdin S; Chen BY; Fofanov VY; Kimmel M; Kavraki LE; Lichtarge O
    BMC Bioinformatics; 2008 Jan; 9():17. PubMed ID: 18190718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An assessment of catalytic residue 3D ensembles for the prediction of enzyme function.
    Žváček C; Friedrichs G; Heizinger L; Merkl R
    BMC Bioinformatics; 2015 Nov; 16():359. PubMed ID: 26538500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the structural context and identification of enzyme catalytic residues.
    Chien YT; Huang SW
    Biomed Res Int; 2013; 2013():802945. PubMed ID: 23484160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conservation of electrostatic properties within enzyme families and superfamilies.
    Livesay DR; Jambeck P; Rojnuckarin A; Subramaniam S
    Biochemistry; 2003 Apr; 42(12):3464-73. PubMed ID: 12653550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the importance of protein structure to nature's routes for divergent evolution in TIM barrel enzymes.
    Wise EL; Rayment I
    Acc Chem Res; 2004 Mar; 37(3):149-58. PubMed ID: 15023082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of cyclohexadienyl dehydratase from an ancestral solute-binding protein.
    Clifton BE; Kaczmarski JA; Carr PD; Gerth ML; Tokuriki N; Jackson CJ
    Nat Chem Biol; 2018 Jun; 14(6):542-547. PubMed ID: 29686357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric dynamic coupling promotes alternative evolutionary pathways in an enzyme dimer.
    Ambrus V; Hoffka G; Fuxreiter M
    Sci Rep; 2020 Nov; 10(1):18866. PubMed ID: 33139795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.