These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 12377129)

  • 21. Enzyme promiscuity: engine of evolutionary innovation.
    Pandya C; Farelli JD; Dunaway-Mariano D; Allen KN
    J Biol Chem; 2014 Oct; 289(44):30229-30236. PubMed ID: 25210039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes.
    Jack BR; Meyer AG; Echave J; Wilke CO
    PLoS Biol; 2016 May; 14(5):e1002452. PubMed ID: 27138088
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amino acid network for prediction of catalytic residues in enzymes: a comparison survey.
    Zhou J; Yan W; Hu G; Shen B
    Curr Protein Pept Sci; 2016; 17(1):41-51. PubMed ID: 26412789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate specificity determinants of the methanogen homoaconitase enzyme: structure and function of the small subunit.
    Jeyakanthan J; Drevland RM; Gayathri DR; Velmurugan D; Shinkai A; Kuramitsu S; Yokoyama S; Graham DE
    Biochemistry; 2010 Mar; 49(12):2687-96. PubMed ID: 20170198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shining a light on enzyme promiscuity.
    Copley SD
    Curr Opin Struct Biol; 2017 Dec; 47():167-175. PubMed ID: 29169066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Repurposing TRASH: emergence of the enzyme organomercurial lyase from a non-catalytic zinc finger scaffold.
    Kaur G; Subramanian S
    J Struct Biol; 2014 Oct; 188(1):16-21. PubMed ID: 25220669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New insights about enzyme evolution from large scale studies of sequence and structure relationships.
    Brown SD; Babbitt PC
    J Biol Chem; 2014 Oct; 289(44):30221-30228. PubMed ID: 25210038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anatomy of enzyme channels.
    Pravda L; Berka K; Svobodová Vařeková R; Sehnal D; Banáš P; Laskowski RA; Koča J; Otyepka M
    BMC Bioinformatics; 2014 Nov; 15(1):379. PubMed ID: 25403510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzyme promiscuity: a mechanistic and evolutionary perspective.
    Khersonsky O; Tawfik DS
    Annu Rev Biochem; 2010; 79():471-505. PubMed ID: 20235827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A glimpse into the specialization history of the lipases/acyltransferases family of CpLIP2.
    Jan AH; Dubreucq E; Drone J; Subileau M
    Biochim Biophys Acta Proteins Proteom; 2017 Sep; 1865(9):1105-1113. PubMed ID: 28627478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families.
    Bordo D; Deriu D; Colnaghi R; Carpen A; Pagani S; Bolognesi M
    J Mol Biol; 2000 May; 298(4):691-704. PubMed ID: 10788330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emergence of diverse biochemical activities in evolutionarily conserved structural scaffolds of proteins.
    Anantharaman V; Aravind L; Koonin EV
    Curr Opin Chem Biol; 2003 Feb; 7(1):12-20. PubMed ID: 12547421
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analogous enzymes: independent inventions in enzyme evolution.
    Galperin MY; Walker DR; Koonin EV
    Genome Res; 1998 Aug; 8(8):779-90. PubMed ID: 9724324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Allostery in enzyme catalysis.
    Lisi GP; Loria JP
    Curr Opin Struct Biol; 2017 Dec; 47():123-130. PubMed ID: 28865247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. To what extent do structural changes in catalytic metal sites affect enzyme function?
    Valasatava Y; Rosato A; Furnham N; Thornton JM; Andreini C
    J Inorg Biochem; 2018 Feb; 179():40-53. PubMed ID: 29161638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series.
    Khersonsky O; Röthlisberger D; Dym O; Albeck S; Jackson CJ; Baker D; Tawfik DS
    J Mol Biol; 2010 Mar; 396(4):1025-42. PubMed ID: 20036254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resolving protein structure-function-binding site relationships from a binding site similarity network perspective.
    Mudgal R; Srinivasan N; Chandra N
    Proteins; 2017 Jul; 85(7):1319-1335. PubMed ID: 28342236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational Variation in Enzyme Catalysis: A Structural Study on Catalytic Residues.
    Riziotis IG; Ribeiro AJM; Borkakoti N; Thornton JM
    J Mol Biol; 2022 Apr; 434(7):167517. PubMed ID: 35240125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-catalytic Binding Sites Induce Weaker Long-Range Evolutionary Rate Gradients than Catalytic Sites in Enzymes.
    Sharir-Ivry A; Xia Y
    J Mol Biol; 2019 Sep; 431(19):3860-3870. PubMed ID: 31325440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Looking at enzymes from the inside out: the proximity of catalytic residues to the molecular centroid can be used for detection of active sites and enzyme-ligand interfaces.
    Ben-Shimon A; Eisenstein M
    J Mol Biol; 2005 Aug; 351(2):309-26. PubMed ID: 16019028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.