These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 12378536)
1. Reactivation of Ca2+-dependent cytoplasmic contraction in permeabilized cell models of the heliozoon Echinosphaerium akamae. Arikawa M; Suzaki T Cell Motil Cytoskeleton; 2002 Dec; 53(4):267-72. PubMed ID: 12378536 [TBL] [Abstract][Full Text] [Related]
2. The ultrastructure of contractile tubules in the heliozoon Actinophrys sol and their possible involvement in rapid axopodial contraction. Kinoshita E; Shigenaka Y; Suzaki T J Eukaryot Microbiol; 2001; 48(5):519-26. PubMed ID: 11596916 [TBL] [Abstract][Full Text] [Related]
3. Ca2+-dependent in vitro contractility of a precipitate isolated from an extract of the heliozoon Actinophrys sol. Arikawa M; Saito A; Omura G; Khan SM; Suetomo Y; Kakuta S; Suzaki T Cell Motil Cytoskeleton; 2006 Feb; 63(2):57-65. PubMed ID: 16362955 [TBL] [Abstract][Full Text] [Related]
4. A model of contractile tubules showing how they contract in the heliozoan Echinosphaerium. Matsuoka T; Shigenaka Y; Naitoh Y Cell Struct Funct; 1985 Mar; 10(1):63-70. PubMed ID: 3995604 [TBL] [Abstract][Full Text] [Related]
5. Axopodial contraction in the heliozoon Raphidiophrys contractilis requires extracellular Ca2+. Khan SM; Arikawa M; Omura G; Suetomo Y; Kakuta S; Suzaki T Zoolog Sci; 2003 Nov; 20(11):1367-72. PubMed ID: 14624035 [TBL] [Abstract][Full Text] [Related]
6. Ca2+-dependent nuclear contraction in the heliozoon Actinophrys sol. Arikawa M; Saito A; Omura G; Mostafa Kamal Khan SM; Suetomo Y; Kakuta S; Suzaki T Cell Calcium; 2005 Nov; 38(5):447-55. PubMed ID: 16099499 [TBL] [Abstract][Full Text] [Related]
7. Cell motility during wound healing in giant algal cells: contraction in detergent-permeabilized cell models of Ernodesmis. La Claire JW2nd Eur J Cell Biol; 1984 Mar; 33(2):180-9. PubMed ID: 6714240 [TBL] [Abstract][Full Text] [Related]
8. Axopodial degradation in the heliozoon Raphidiophrys contractilis: a novel bioassay system for detecting heavy metal toxicity in an aquatic environment. Khan SM; Yoshimura C; Arikawa M; Omura G; Nishiyama S; Suetomo Y; Kakuta S; Suzaki T Environ Sci; 2006; 13(4):193-200. PubMed ID: 17095991 [TBL] [Abstract][Full Text] [Related]
9. Food capture and ingestion in the large heliozoan, Echinosphaerium nucleofilum. Suzaki T; Shigenaka Y; Watanabe S; Toyohara A J Cell Sci; 1980 Apr; 42():61-79. PubMed ID: 7400244 [TBL] [Abstract][Full Text] [Related]
10. Microfilament and microtubule organization and dynamics in process extension by central glia-4 oligodendrocytes: evidence for a microtubule organizing center. Rumsby M; Afsari F; Stark M; Hughson E Glia; 2003 Apr; 42(2):118-29. PubMed ID: 12655596 [TBL] [Abstract][Full Text] [Related]
11. Evidence for a direct conversion between two tubulin polymers--microtubules and helical filaments--in the foraminiferan, Allogromia laticollaris. Welnhofer EA; Travis JL Cell Motil Cytoskeleton; 1998; 41(2):107-16. PubMed ID: 9786086 [TBL] [Abstract][Full Text] [Related]
12. Structure and function of the cytoskeleton in heliozoa: 2. Measurement of the force of rapid axopodial contraction in Echinosphaerium. Suzaki T; Ando M; Ishigame K; Shigenaka Y; Sugiyama M Eur J Protistol; 1992 Nov; 28(4):430-3. PubMed ID: 23195343 [TBL] [Abstract][Full Text] [Related]
14. Isolation and properties of the axopodial cytoskeleton of a heliozoan, Echinosphaerium akamae. Sugiyama M; Ikegawa S; Masuyama E; Suzaki T; Ishida M; Shigenaka Y Eur J Protistol; 1992 May; 28(2):214-9. PubMed ID: 23195106 [TBL] [Abstract][Full Text] [Related]
15. Motility in Echinosphaerium nucleofilum. II. Cytoplasmic contractility and its molecular basis. Edds KT J Cell Biol; 1975 Jul; 66(1):156-64. PubMed ID: 1141373 [TBL] [Abstract][Full Text] [Related]
16. Identification of elongation factor-1alpha as a Ca2+/calmodulin-binding protein in Tetrahymena cilia. Ueno H; Gonda K; Takeda T; Numata O Cell Motil Cytoskeleton; 2003 May; 55(1):51-60. PubMed ID: 12673598 [TBL] [Abstract][Full Text] [Related]
17. The role of divalent cations in the regulation of microtubule assembly. In vivo studies on microtubules of the heliozoan axopodium using the ionophore A23187. Schliwa M J Cell Biol; 1976 Sep; 70(3):527-40. PubMed ID: 821953 [TBL] [Abstract][Full Text] [Related]
18. Microinjected F-actin into dividing newt eggs moves toward the next cleavage furrow together with Ca2+ stores with inositol 1,4,5-trisphosphate receptor in a microtubule- and microtubule motor-dependent manner. Mitsuyama F; Futatsugi Y; Okuya M; Karagiozov K; Kato Y; Kanno T; Sano H; Koide T; Sawai T Ital J Anat Embryol; 2008; 113(3):143-51. PubMed ID: 19205586 [TBL] [Abstract][Full Text] [Related]
19. Ca2+-dependent contractility of isolated and demembranated macronuclei in the hypotrichous ciliate Euplotes aediculatus. Arikawa M; Momokawa N; Saito A; Omura G; Khan SM; Suetomo Y; Kakuta S; Suzaki T Cell Calcium; 2003 Feb; 33(2):113-7. PubMed ID: 12531187 [TBL] [Abstract][Full Text] [Related]
20. Motility in Echinosphaerium nucleofilum. I. An analysis of particle motions in the axopodia and a direct test of the involvement of the axoneme. Edds KT J Cell Biol; 1975 Jul; 66(1):145-55. PubMed ID: 1141372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]