BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 12379105)

  • 1. Molecular determinants of sugar transport regulation by ATP.
    Levine KB; Cloherty EK; Hamill S; Carruthers A
    Biochemistry; 2002 Oct; 41(42):12629-38. PubMed ID: 12379105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative nucleotide binding to the human erythrocyte sugar transporter.
    Cloherty EK; Levine KB; Graybill C; Carruthers A
    Biochemistry; 2002 Oct; 41(42):12639-51. PubMed ID: 12379106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of the human erythrocyte glucose transport protein are determined by cellular context.
    Levine KB; Robichaud TK; Hamill S; Sultzman LA; Carruthers A
    Biochemistry; 2005 Apr; 44(15):5606-16. PubMed ID: 15823019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and physiologic determinants of human erythrocyte sugar transport regulation by adenosine triphosphate.
    Levine KB; Cloherty EK; Fidyk NJ; Carruthers A
    Biochemistry; 1998 Sep; 37(35):12221-32. PubMed ID: 9724536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites.
    Cloherty EK; Levine KB; Carruthers A
    Biochemistry; 2001 Dec; 40(51):15549-61. PubMed ID: 11747430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The predicted ATP-binding domains in the hexose transporter GLUT1 critically affect transporter activity.
    Liu Q; Vera JC; Peng H; Golde DW
    Biochemistry; 2001 Jul; 40(26):7874-81. PubMed ID: 11425315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-dependent substrate occlusion by the human erythrocyte sugar transporter.
    Heard KS; Fidyk N; Carruthers A
    Biochemistry; 2000 Mar; 39(11):3005-14. PubMed ID: 10715121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization.
    Zottola RJ; Cloherty EK; Coderre PE; Hansen A; Hebert DN; Carruthers A
    Biochemistry; 1995 Aug; 34(30):9734-47. PubMed ID: 7626644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding.
    Coderre PE; Cloherty EK; Zottola RJ; Carruthers A
    Biochemistry; 1995 Aug; 34(30):9762-73. PubMed ID: 7626647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The human erythrocyte sugar transporter is also a nucleotide binding protein.
    Carruthers A; Helgerson AL
    Biochemistry; 1989 Oct; 28(21):8337-46. PubMed ID: 2532542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of GLUT1 inhibition by cytoplasmic ATP.
    Blodgett DM; De Zutter JK; Levine KB; Karim P; Carruthers A
    J Gen Physiol; 2007 Aug; 130(2):157-68. PubMed ID: 17635959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane-bound glyceraldehyde-3-phosphate dehydrogenase and multiphasic erythrocyte sugar transport.
    Heard KS; Diguette M; Heard AC; Carruthers A
    Exp Physiol; 1998 Mar; 83(2):195-202. PubMed ID: 9568479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism.
    Cloherty EK; Diamond DL; Heard KS; Carruthers A
    Biochemistry; 1996 Oct; 35(40):13231-9. PubMed ID: 8855962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the structural features of the C-terminus of GLUT1 that are required for transport catalytic activity.
    Muraoka A; Hashiramoto M; Clark AE; Edwards LC; Sakura H; Kadowaki T; Holman GD; Kasuga M
    Biochem J; 1995 Oct; 311 ( Pt 2)(Pt 2):699-704. PubMed ID: 7487915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substitution of tyrosine 293 of GLUT1 locks the transporter into an outward facing conformation.
    Mori H; Hashiramoto M; Clark AE; Yang J; Muraoka A; Tamori Y; Kasuga M; Holman GD
    J Biol Chem; 1994 Apr; 269(15):11578-83. PubMed ID: 8157690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A double leucine within the GLUT4 glucose transporter COOH-terminal domain functions as an endocytosis signal.
    Corvera S; Chawla A; Chakrabarti R; Joly M; Buxton J; Czech MP
    J Cell Biol; 1994 Aug; 126(4):979-89. PubMed ID: 7519625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of ATP, oestradiol, genistein and the anti-oestrogens, faslodex (ICI 182780) and tamoxifen, with the human erythrocyte glucose transporter, GLUT1.
    Afzal I; Cunningham P; Naftalin RJ
    Biochem J; 2002 Aug; 365(Pt 3):707-19. PubMed ID: 12133004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of transmembrane segment 10 of the Glut1 glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility.
    Mueckler M; Makepeace C
    J Biol Chem; 2002 Feb; 277(5):3498-503. PubMed ID: 11713254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the C-terminal tail of the GLUT1 glucose transporter in its expression and function in Xenopus laevis oocytes.
    Due AD; Qu ZC; Thomas JM; Buchs A; Powers AC; May JM
    Biochemistry; 1995 Apr; 34(16):5462-71. PubMed ID: 7727404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.