BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 12379150)

  • 1. Triosidines: novel Maillard reaction products and cross-links from the reaction of triose sugars with lysine and arginine residues.
    Tessier FJ; Monnier VM; Sayre LM; Kornfield JA
    Biochem J; 2003 Feb; 369(Pt 3):705-19. PubMed ID: 12379150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and identification of the 3-hydroxy-5-hydroxymethyl-pyridinium compound as a novel advanced glycation end product on glyceraldehyde-related Maillard reaction.
    Usui T; Hayase F
    Biosci Biotechnol Biochem; 2003 Apr; 67(4):930-2. PubMed ID: 12784645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyridinium-carbaldehyde: active Maillard reaction product from the reaction of hexoses with lysine residues.
    Reihl O; Biemel KM; Lederer MO; Schwack W
    Carbohydr Res; 2004 Feb; 339(3):705-14. PubMed ID: 15013409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive survey of the acid-stable fluorescent cross-links formed by ribose with basic amino acids, and partial characterization of a novel Maillard cross-link.
    Graham L
    Biochim Biophys Acta; 1996 Sep; 1297(1):9-16. PubMed ID: 8841375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytotoxicity and oxidative stress induced by the glyceraldehyde-related Maillard reaction products for HL-60 cells.
    Usui T; Shizuuchi S; Watanabe H; Hayase F
    Biosci Biotechnol Biochem; 2004 Feb; 68(2):333-40. PubMed ID: 14981296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-linking of proteins by Maillard processes: characterization and detection of lysine-arginine cross-links derived from glyoxal and methylglyoxal.
    Lederer MO; Klaiber RG
    Bioorg Med Chem; 1999 Nov; 7(11):2499-507. PubMed ID: 10632059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and detection of lysine-arginine cross-links derived from dehydroascorbic acid.
    Reihl O; Lederer MO; Schwack W
    Carbohydr Res; 2004 Feb; 339(3):483-91. PubMed ID: 15013385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of formation of the Maillard protein cross-link pentosidine. Glucose, fructose, and ascorbate as pentosidine precursors.
    Grandhee SK; Monnier VM
    J Biol Chem; 1991 Jun; 266(18):11649-53. PubMed ID: 1904866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlating changes that occur in chemical properties with the generation of antioxidant capacity in different sugar-amino acid Maillard reaction models.
    Chen XM; Kitts DD
    J Food Sci; 2011 Aug; 76(6):C831-7. PubMed ID: 21623789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation, purification and characterization of histidino-threosidine, a novel Maillard reaction protein crosslink from threose, lysine and histidine.
    Dai Z; Nemet I; Shen W; Monnier VM
    Arch Biochem Biophys; 2007 Jul; 463(1):78-88. PubMed ID: 17466255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a novel advanced glycation end product derived from lactaldehyde.
    Fujimoto S; Murakami Y; Miyake H; Hayase F; Watanabe H
    Biosci Biotechnol Biochem; 2019 Jun; 83(6):1136-1145. PubMed ID: 30822216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel yellow compounds, dilysyldipyrrolones A and B, formed from xylose and lysine by the Maillard reaction.
    Sakamoto J; Takenaka M; Ono H; Murata M
    Biosci Biotechnol Biochem; 2009 Sep; 73(9):2065-9. PubMed ID: 19734661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-enzymatic interactions of glyoxylate with lysine, arginine, and glucosamine: a study of advanced non-enzymatic glycation like compounds.
    Dutta U; Cohenford MA; Guha M; Dain JA
    Bioorg Chem; 2007 Feb; 35(1):11-24. PubMed ID: 16970975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein modification by the degradation products of ascorbate: formation of a novel pyrrole from the Maillard reaction of L-threose with proteins.
    Nagaraj RH; Monnier VM
    Biochim Biophys Acta; 1995 Nov; 1253(1):75-84. PubMed ID: 7492603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosylation of lysine-containing pentapeptides by glucuronic acid: new insights into the Maillard reaction.
    Horvat S; Roscić M
    Carbohydr Res; 2010 Feb; 345(3):377-84. PubMed ID: 20034621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking the behavior of Maillard browning in lysine/arginine-sugar model systems under high hydrostatic pressure.
    Ma XJ; Gao JY; Tong P; Li X; Chen HB
    J Sci Food Agric; 2017 Dec; 97(15):5168-5175. PubMed ID: 28436030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glyceraldehyde-derived advanced glycation end-products having pyrrolopyridinium-based crosslinks.
    Shigeta T; Sasamoto K; Yamamoto T
    Biochem Biophys Rep; 2021 Jul; 26():100963. PubMed ID: 33748437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spiro cross-links: representatives of a new class of glycoxidation products.
    Reihl O; Biemel KM; Eipper W; Lederer MO; Schwack W
    J Agric Food Chem; 2003 Jul; 51(16):4810-8. PubMed ID: 14705917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of amino acid residues in carious dentin matrix.
    Kleter GA; Damen JJ; Buijs MJ; Ten Cate JM
    J Dent Res; 1998 Mar; 77(3):488-95. PubMed ID: 9496922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct.
    Shipanova IN; Glomb MA; Nagaraj RH
    Arch Biochem Biophys; 1997 Aug; 344(1):29-36. PubMed ID: 9244378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.