BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 12379152)

  • 1. Birth and death of protein domains: a simple model of evolution explains power law behavior.
    Karev GP; Wolf YI; Rzhetsky AY; Berezovskaya FS; Koonin EV
    BMC Evol Biol; 2002 Oct; 2():18. PubMed ID: 12379152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple stochastic birth and death models of genome evolution: was there enough time for us to evolve?
    Karev GP; Wolf YI; Koonin EV
    Bioinformatics; 2003 Oct; 19(15):1889-900. PubMed ID: 14555621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene family evolution: an in-depth theoretical and simulation analysis of non-linear birth-death-innovation models.
    Karev GP; Wolf YI; Berezovskaya FS; Koonin EV
    BMC Evol Biol; 2004 Sep; 4():32. PubMed ID: 15357876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling genome evolution with a diffusion approximation of a birth-and-death process.
    Karev GP; Berezovskaya FS; Koonin EV
    Bioinformatics; 2005 Nov; 21 Suppl 3():iii12-9. PubMed ID: 16306387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scale-free behavior in protein domain networks.
    Wuchty S
    Mol Biol Evol; 2001 Sep; 18(9):1694-702. PubMed ID: 11504849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are there laws of genome evolution?
    Koonin EV
    PLoS Comput Biol; 2011 Aug; 7(8):e1002173. PubMed ID: 21901087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergent evolution of a structural proteome: phenomenological models.
    Roland CB; Shakhnovich EI
    Biophys J; 2007 Feb; 92(3):701-16. PubMed ID: 17071665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological applications of the theory of birth-and-death processes.
    Novozhilov AS; Karev GP; Koonin EV
    Brief Bioinform; 2006 Mar; 7(1):70-85. PubMed ID: 16761366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of complete genomes reveals gene loss, acquisition and acceleration of evolutionary rates in Metazoa, suggests a prevalence of evolution via gene acquisition and indicates that the evolutionary rates in animals tend to be conserved.
    Babenko VN; Krylov DM
    Nucleic Acids Res; 2004; 32(17):5029-35. PubMed ID: 15448184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general tendency for conservation of protein length across eukaryotic kingdoms.
    Wang D; Hsieh M; Li WH
    Mol Biol Evol; 2005 Jan; 22(1):142-7. PubMed ID: 15371528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network motif-based analysis of regulatory patterns in paralogous gene pairs.
    Melkus G; Rucevskis P; Celms E; Čerāns K; Freivalds K; Kikusts P; Lace L; Opmanis M; Rituma D; Viksna J
    J Bioinform Comput Biol; 2020 Jun; 18(3):2040008. PubMed ID: 32698721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin and implications of zero degeneracy in networks spectra.
    Yadav A; Jalan S
    Chaos; 2015 Apr; 25(4):043110. PubMed ID: 25933658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential attachment in the evolution of metabolic networks.
    Light S; Kraulis P; Elofsson A
    BMC Genomics; 2005 Nov; 6():159. PubMed ID: 16281983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The power-law distribution of gene family size is driven by the pseudogenisation rate's heterogeneity between gene families.
    Hughes T; Liberles DA
    Gene; 2008 May; 414(1-2):85-94. PubMed ID: 18378100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Birth and death of duplicated genes in completely sequenced eukaryotes.
    Wagner A
    Trends Genet; 2001 May; 17(5):237-9. PubMed ID: 11335019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana.
    Cannon SB; Mitra A; Baumgarten A; Young ND; May G
    BMC Plant Biol; 2004 Jun; 4():10. PubMed ID: 15171794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes.
    Mirkin BG; Fenner TI; Galperin MY; Koonin EV
    BMC Evol Biol; 2003 Jan; 3():2. PubMed ID: 12515582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes.
    Koonin EV; Fedorova ND; Jackson JD; Jacobs AR; Krylov DM; Makarova KS; Mazumder R; Mekhedov SL; Nikolskaya AN; Rao BS; Rogozin IB; Smirnov S; Sorokin AV; Sverdlov AV; Vasudevan S; Wolf YI; Yin JJ; Natale DA
    Genome Biol; 2004; 5(2):R7. PubMed ID: 14759257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameters of proteome evolution from histograms of amino-acid sequence identities of paralogous proteins.
    Axelsen JB; Yan KK; Maslov S
    Biol Direct; 2007 Nov; 2():32. PubMed ID: 18039386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Difference in gene duplicability may explain the difference in overall structure of protein-protein interaction networks among eukaryotes.
    Hase T; Niimura Y; Tanaka H
    BMC Evol Biol; 2010 Nov; 10():358. PubMed ID: 21087510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.