These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 12379351)

  • 41. Low-frequency heme, iron-ligand, and ligand modes of imidazole and imidazolate complexes of iron protoporphyrin and microperoxidase in aqueous solution. An analysis by far-infrared difference spectroscopy.
    Marboutin L; Desbois A; Berthomieu C
    J Phys Chem B; 2009 Apr; 113(13):4492-9. PubMed ID: 19320527
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modulation of metal displacements in a saddle distorted macrocycle: synthesis, structure, and properties of high-spin Fe(III) porphyrins and implications for the hemoproteins.
    Patra R; Chaudhary A; Ghosh SK; Rath SP
    Inorg Chem; 2008 Sep; 47(18):8324-35. PubMed ID: 18700752
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural basis for antibody catalysis of a disfavored ring closure reaction.
    Gruber K; Zhou B; Houk KN; Lerner RA; Shevlin CG; Wilson IA
    Biochemistry; 1999 Jun; 38(22):7062-74. PubMed ID: 10353817
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermostable peroxidase activity with a recombinant antibody L chain-porphyrin Fe(III) complex.
    Takagi M; Kohda K; Hamuro T; Harada A; Yamaguchi H; Kamachi M; Imanaka T
    FEBS Lett; 1995 Nov; 375(3):273-6. PubMed ID: 7498516
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microperoxidase 8 catalysed nitrogen oxides formation from oxidation of N-hydroxyguanidines by hydrogen peroxide.
    Ricoux R; Boucher JL; Mandon D; Frapart YM; Henry Y; Mansuy D; Mahy JP
    Eur J Biochem; 2003 Jan; 270(1):47-55. PubMed ID: 12492474
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two modes of binding of N-hydroxyguanidines to NO synthases: first evidence for the formation of iron-N-hydroxyguanidine complexes and key role of tetrahydrobiopterin in determining the binding mode.
    Lefèvre-Groboillot D; Frapart Y; Desbois A; Zimmermann JL; Boucher JL; Gorren AC; Mayer B; Stuehr DJ; Mansuy D
    Biochemistry; 2003 Apr; 42(13):3858-67. PubMed ID: 12667076
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neocarzinostatin-based hybrid biocatalysts for oxidation reactions.
    Sansiaume-Dagousset E; Urvoas A; Chelly K; Ghattas W; Maréchal JD; Mahy JP; Ricoux R
    Dalton Trans; 2014 Jun; 43(22):8344-54. PubMed ID: 24728274
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The nature of the high-valent complexes in the catalytic cycles of hemoproteins.
    Silaghi-Dumitrescu R
    J Biol Inorg Chem; 2004 Jun; 9(4):471-6. PubMed ID: 15106002
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Insights from kinetic studies of photo-generated compound II models: Reactivity toward aryl sulfides.
    Lee NF; Patel D; Liu H; Zhang R
    J Inorg Biochem; 2018 Jun; 183():58-65. PubMed ID: 29550659
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Valence-tautomerism in high-valent iron and manganese porphyrins.
    Weiss R; Bulach V; Gold A; Terner J; Trautwein AX
    J Biol Inorg Chem; 2001 Oct; 6(8):831-45. PubMed ID: 11713691
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modification of the heme active site to increase the peroxidase activity of thermophilic cytochrome P450: a rational approach.
    Behera RK; Goyal S; Mazumdar S
    J Inorg Biochem; 2010 Nov; 104(11):1185-94. PubMed ID: 20709408
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cyclometalated ruthenium(II) complexes as efficient redox mediators in peroxidase catalysis.
    Alpeeva IS; Soukharev VS; Alexandrova L; Shilova NV; Bovin NV; Csöregi E; Ryabov AD; Sakharov IY
    J Biol Inorg Chem; 2003 Jul; 8(6):683-8. PubMed ID: 12774217
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structures and Catalytic Activities of Complexes between Heme and All Parallel-Stranded Monomeric G-Quadruplex DNAs.
    Yamamoto Y; Araki H; Shinomiya R; Hayasaka K; Nakayama Y; Ochi K; Shibata T; Momotake A; Ohyama T; Hagihara M; Hemmi H
    Biochemistry; 2018 Oct; 57(41):5938-5948. PubMed ID: 30234971
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The coordination of imidazole and substituted pyridines by the hemeoctapeptide N-acetyl-ferromicroperoxidase-8 (FeIINAcMP8).
    Vashi PR; Marques HM
    J Inorg Biochem; 2004 Sep; 98(9):1471-82. PubMed ID: 15337599
    [TBL] [Abstract][Full Text] [Related]  

  • 56. X-ray absorption studies of intermediates in peroxidase activity.
    Chance B; Powers L; Ching Y; Poulos T; Schonbaum GR; Yamazaki I; Paul KG
    Arch Biochem Biophys; 1984 Dec; 235(2):596-611. PubMed ID: 6097192
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Porous metal-organic frameworks for heterogeneous biomimetic catalysis.
    Zhao M; Ou S; Wu CD
    Acc Chem Res; 2014 Apr; 47(4):1199-207. PubMed ID: 24499017
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Elucidation of distinct ligand binding sites for cytochrome P450 3A4.
    Hosea NA; Miller GP; Guengerich FP
    Biochemistry; 2000 May; 39(20):5929-39. PubMed ID: 10821664
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Five-coordinate iron-porphyrin as a model for the active site of hemoproteins. Characterization and coordination properties.
    Momenteau M; Rougée M; Loock B
    Eur J Biochem; 1976 Dec; 71(1):63-76. PubMed ID: 1009955
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A heme-peptide metalloenzyme mimetic with natural peroxidase-like activity.
    Nastri F; Lista L; Ringhieri P; Vitale R; Faiella M; Andreozzi C; Travascio P; Maglio O; Lombardi A; Pavone V
    Chemistry; 2011 Apr; 17(16):4444-53. PubMed ID: 21416513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.