These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 12379717)

  • 1. Staphylococcus aureus aconitase inactivation unexpectedly inhibits post-exponential-phase growth and enhances stationary-phase survival.
    Somerville GA; Chaussee MS; Morgan CI; Fitzgerald JR; Dorward DW; Reitzer LJ; Musser JM
    Infect Immun; 2002 Nov; 70(11):6373-82. PubMed ID: 12379717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of acetate catabolism and growth yield in Staphylococcus aureus: implications for host-pathogen interactions.
    Somerville GA; Saïd-Salim B; Wickman JM; Raffel SJ; Kreiswirth BN; Musser JM
    Infect Immun; 2003 Aug; 71(8):4724-32. PubMed ID: 12874354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Staphylococcus aureus ClpC is required for stress resistance, aconitase activity, growth recovery, and death.
    Chatterjee I; Becker P; Grundmeier M; Bischoff M; Somerville GA; Peters G; Sinha B; Harraghy N; Proctor RA; Herrmann M
    J Bacteriol; 2005 Jul; 187(13):4488-96. PubMed ID: 15968059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redirection of Metabolism in Response to Fatty Acid Kinase in Staphylococcus aureus.
    DeMars Z; Bose JL
    J Bacteriol; 2018 Oct; 200(19):. PubMed ID: 30012726
    [No Abstract]   [Full Text] [Related]  

  • 5. TCA cycle inactivation in Staphylococcus aureus alters nitric oxide production in RAW 264.7 cells.
    Massilamany C; Gangaplara A; Gardner DJ; Musser JM; Steffen D; Somerville GA; Reddy J
    Mol Cell Biochem; 2011 Sep; 355(1-2):75-82. PubMed ID: 21519920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolite control protein E (CcpE) is a LysR-type transcriptional regulator of tricarboxylic acid cycle activity in Staphylococcus aureus.
    Hartmann T; Zhang B; Baronian G; Schulthess B; Homerova D; Grubmüller S; Kutzner E; Gaupp R; Bertram R; Powers R; Eisenreich W; Kormanec J; Herrmann M; Molle V; Somerville GA; Bischoff M
    J Biol Chem; 2013 Dec; 288(50):36116-28. PubMed ID: 24194525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic sensor governing bacterial virulence in Staphylococcus aureus.
    Ding Y; Liu X; Chen F; Di H; Xu B; Zhou L; Deng X; Wu M; Yang CG; Lan L
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):E4981-90. PubMed ID: 25368190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro serial passage of Staphylococcus aureus: changes in physiology, virulence factor production, and agr nucleotide sequence.
    Somerville GA; Beres SB; Fitzgerald JR; DeLeo FR; Cole RL; Hoff JS; Musser JM
    J Bacteriol; 2002 Mar; 184(5):1430-7. PubMed ID: 11844774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Staphylococcus aureus ClpC is involved in protection of carbon-metabolizing enzymes from carbonylation during stationary growth phase.
    Chatterjee I; Maisonneuve E; Ezraty B; Herrmann M; Dukan S
    Int J Med Microbiol; 2011 Apr; 301(4):341-6. PubMed ID: 21273120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Staphylococcal aconitase expression during iron deficiency is controlled by an sRNA-driven feedforward loop and moonlighting activity.
    Barrault M; Chabelskaya S; Coronel-Tellez RH; Toffano-Nioche C; Jacquet E; Bouloc P
    Nucleic Acids Res; 2024 Aug; 52(14):8241-8253. PubMed ID: 38869061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Staphylococcus aureus Coordinates Leukocidin Expression and Pathogenesis by Sensing Metabolic Fluxes via RpiRc.
    Balasubramanian D; Ohneck EA; Chapman J; Weiss A; Kim MK; Reyes-Robles T; Zhong J; Shaw LN; Lun DS; Ueberheide B; Shopsin B; Torres VJ
    mBio; 2016 Jun; 7(3):. PubMed ID: 27329753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tricarboxylic acid cycle-dependent attenuation of Staphylococcus aureus in vivo virulence by selective inhibition of amino acid transport.
    Zhu Y; Xiong YQ; Sadykov MR; Fey PD; Lei MG; Lee CY; Bayer AS; Somerville GA
    Infect Immun; 2009 Oct; 77(10):4256-64. PubMed ID: 19667045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino Acid Catabolism in
    Halsey CR; Lei S; Wax JK; Lehman MK; Nuxoll AS; Steinke L; Sadykov M; Powers R; Fey PD
    mBio; 2017 Feb; 8(1):. PubMed ID: 28196956
    [No Abstract]   [Full Text] [Related]  

  • 14. Suppression of TCA cycle activity in the cardiac muscle cell by hydroperoxide-induced oxidant stress.
    Janero DR; Hreniuk D
    Am J Physiol; 1996 Jun; 270(6 Pt 1):C1735-42. PubMed ID: 8764157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and deformylation of Staphylococcus aureus delta-toxin are linked to tricarboxylic acid cycle activity.
    Somerville GA; Cockayne A; Dürr M; Peschel A; Otto M; Musser JM
    J Bacteriol; 2003 Nov; 185(22):6686-94. PubMed ID: 14594843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of TCA cycle enhances Staphylococcus aureus persister cell formation in stationary phase.
    Wang Y; Bojer MS; George SE; Wang Z; Jensen PR; Wolz C; Ingmer H
    Sci Rep; 2018 Jul; 8(1):10849. PubMed ID: 30022089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global regulatory mutations in csrA and rpoS cause severe central carbon stress in Escherichia coli in the presence of acetate.
    Wei B; Shin S; LaPorte D; Wolfe AJ; Romeo T
    J Bacteriol; 2000 Mar; 182(6):1632-40. PubMed ID: 10692369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Staphylococcus aureus cidC gene encodes a pyruvate oxidase that affects acetate metabolism and cell death in stationary phase.
    Patton TG; Rice KC; Foster MK; Bayles KW
    Mol Microbiol; 2005 Jun; 56(6):1664-74. PubMed ID: 15916614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Small-Molecule Inhibitor of Iron-Sulfur Cluster Assembly Uncovers a Link between Virulence Regulation and Metabolism in Staphylococcus aureus.
    Choby JE; Mike LA; Mashruwala AA; Dutter BF; Dunman PM; Sulikowski GA; Boyd JM; Skaar EP
    Cell Chem Biol; 2016 Nov; 23(11):1351-1361. PubMed ID: 27773628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insertional inactivation of branched-chain alpha-keto acid dehydrogenase in Staphylococcus aureus leads to decreased branched-chain membrane fatty acid content and increased susceptibility to certain stresses.
    Singh VK; Hattangady DS; Giotis ES; Singh AK; Chamberlain NR; Stuart MK; Wilkinson BJ
    Appl Environ Microbiol; 2008 Oct; 74(19):5882-90. PubMed ID: 18689519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.