These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 12379791)
21. Effect of top excision and replacement by 1-naphthylacetic acid on partition and flow of potassium in tobacco plants. Jiang F; Li C; Jeschke WD; Zhang F J Exp Bot; 2001 Nov; 52(364):2143-50. PubMed ID: 11604453 [TBL] [Abstract][Full Text] [Related]
22. Organ-coordinated response of early post-germination mahogany seedlings to drought. Horta LP; Braga MR; Lemos-Filho JP; Modolo LV Tree Physiol; 2014 Apr; 34(4):355-66. PubMed ID: 24690672 [TBL] [Abstract][Full Text] [Related]
23. Hydraulic patterns and safety margins, from stem to stomata, in three eastern U.S. tree species. Johnson DM; McCulloh KA; Meinzer FC; Woodruff DR; Eissenstat DM Tree Physiol; 2011 Jun; 31(6):659-68. PubMed ID: 21724585 [TBL] [Abstract][Full Text] [Related]
24. Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut. Cochard H; Coll L; Le Roux X; Améglio T Plant Physiol; 2002 Jan; 128(1):282-90. PubMed ID: 11788773 [TBL] [Abstract][Full Text] [Related]
25. Recovery of Populus tremuloides seedlings following severe drought causing total leaf mortality and extreme stem embolism. Lu Y; Equiza MA; Deng X; Tyree MT Physiol Plant; 2010 Nov; 140(3):246-57. PubMed ID: 20618763 [TBL] [Abstract][Full Text] [Related]
26. Variation in drought response of sal (Shorea robusta) seedlings. Garkoti SC; Zobel DB; Singh SP Tree Physiol; 2003 Oct; 23(15):1021-30. PubMed ID: 12975126 [TBL] [Abstract][Full Text] [Related]
27. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought. Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118 [TBL] [Abstract][Full Text] [Related]
28. Drought resistance of Ailanthus altissima: root hydraulics and water relations. Trifilò P; Raimondo F; Nardini A; Lo Gullo MA; Salleo S Tree Physiol; 2004 Jan; 24(1):107-14. PubMed ID: 14652220 [TBL] [Abstract][Full Text] [Related]
29. Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation. Domec JC; Noormets A; King JS; Sun G; McNulty SG; Gavazzi MJ; Boggs JL; Treasure EA Plant Cell Environ; 2009 Aug; 32(8):980-91. PubMed ID: 19344336 [TBL] [Abstract][Full Text] [Related]
30. Morphological and physiological differentiation of seedlings between dry and wet habitats in a tropical dry forest. Pineda-García F; Paz H; Tinoco-Ojanguren C Plant Cell Environ; 2011 Sep; 34(9):1536-47. PubMed ID: 21696402 [TBL] [Abstract][Full Text] [Related]
31. Could rapid diameter changes be facilitated by a variable hydraulic conductance? Steppe K; Cochard H; Lacointe A; Améglio T Plant Cell Environ; 2012 Jan; 35(1):150-7. PubMed ID: 21902698 [TBL] [Abstract][Full Text] [Related]
32. Hydraulic architecture and photoinhibition influence spatial distribution of the arborescent palm Euterpe edulis in subtropical forests. Gatti MG; Campanello PI; Villagra M; Montti L; Goldstein G Tree Physiol; 2014 Jun; 34(6):630-9. PubMed ID: 24898220 [TBL] [Abstract][Full Text] [Related]
33. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance. Villagra M; Campanello PI; Montti L; Goldstein G Tree Physiol; 2013 Mar; 33(3):285-96. PubMed ID: 23436182 [TBL] [Abstract][Full Text] [Related]
34. Vein recovery from embolism occurs under negative pressure in leaves of sunflower (Helianthus annuus). Nardini A; Ramani M; Gortan E; Salleo S Physiol Plant; 2008 Aug; 133(4):755-64. PubMed ID: 18346074 [TBL] [Abstract][Full Text] [Related]
35. Predicting the decline in daily maximum transpiration rate of two pine stands during drought based on constant minimum leaf water potential and plant hydraulic conductance. Duursma RA; Kolari P; Perämäki M; Nikinmaa E; Hari P; Delzon S; Loustau D; Ilvesniemi H; Pumpanen J; Mäkelä A Tree Physiol; 2008 Feb; 28(2):265-76. PubMed ID: 18055437 [TBL] [Abstract][Full Text] [Related]
36. Hydraulic and carbohydrate changes in experimental drought-induced mortality of saplings in two conifer species. Anderegg WR; Anderegg LD Tree Physiol; 2013 Mar; 33(3):252-60. PubMed ID: 23514762 [TBL] [Abstract][Full Text] [Related]
37. Effects of phenology, water availability and seed source on loblolly pine biomass partitioning and transpiration. Barnes AD Tree Physiol; 2002 Jul; 22(10):733-40. PubMed ID: 12091155 [TBL] [Abstract][Full Text] [Related]
38. Simulating nectarine tree transpiration and dynamic water storage from responses of leaf conductance to light and sap flow to stem water potential and vapor pressure deficit. Paudel I; Naor A; Gal Y; Cohen S Tree Physiol; 2015 Apr; 35(4):425-38. PubMed ID: 25618897 [TBL] [Abstract][Full Text] [Related]
39. Water stress responses of seedlings of four Mediterranean oak species. Fotelli MN; Radoglou KM; Constantinidou HI Tree Physiol; 2000 Oct; 20(16):1065-75. PubMed ID: 11269958 [TBL] [Abstract][Full Text] [Related]
40. Estimation of whole-plant transpiration of bananas using sap flow measurements. Lu P; Woo KC; Liu ZT J Exp Bot; 2002 Aug; 53(375):1771-9. PubMed ID: 12147727 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]