BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 12379802)

  • 1. ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat.
    Yang JS; Lee SY; Gao M; Bourgoin S; Randazzo PA; Premont RT; Hsu VW
    J Cell Biol; 2002 Oct; 159(1):69-78. PubMed ID: 12379802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation.
    Lee SY; Yang JS; Hong W; Premont RT; Hsu VW
    J Cell Biol; 2005 Jan; 168(2):281-90. PubMed ID: 15657398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional reconstitution of COPI coat assembly and disassembly using chemically defined components.
    Reinhard C; Schweikert M; Wieland FT; Nickel W
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8253-7. PubMed ID: 12832619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ARFGAP2 and ARFGAP3 are essential for COPI coat assembly on the Golgi membrane of living cells.
    Kartberg F; Asp L; Dejgaard SY; Smedh M; Fernandez-Rodriguez J; Nilsson T; Presley JF
    J Biol Chem; 2010 Nov; 285(47):36709-20. PubMed ID: 20858901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature.
    Bigay J; Gounon P; Robineau S; Antonny B
    Nature; 2003 Dec; 426(6966):563-6. PubMed ID: 14654841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ArfGAP1 dynamics and its role in COPI coat assembly on Golgi membranes of living cells.
    Liu W; Duden R; Phair RD; Lippincott-Schwartz J
    J Cell Biol; 2005 Mar; 168(7):1053-63. PubMed ID: 15795316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ArfGAP1 activity and COPI vesicle biogenesis.
    Beck R; Adolf F; Weimer C; Bruegger B; Wieland FT
    Traffic; 2009 Mar; 10(3):307-15. PubMed ID: 19055691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal dynamics of the COPI vesicle machinery.
    Elsner M; Hashimoto H; Simpson JC; Cassel D; Nilsson T; Weiss M
    EMBO Rep; 2003 Oct; 4(10):1000-4. PubMed ID: 14502225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: a role for ArfGAP1.
    Lanoix J; Ouwendijk J; Stark A; Szafer E; Cassel D; Dejgaard K; Weiss M; Nilsson T
    J Cell Biol; 2001 Dec; 155(7):1199-212. PubMed ID: 11748249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential roles of ArfGAP1, ArfGAP2, and ArfGAP3 in COPI trafficking.
    Weimer C; Beck R; Eckert P; Reckmann I; Moelleken J; Brügger B; Wieland F
    J Cell Biol; 2008 Nov; 183(4):725-35. PubMed ID: 19015319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ARF-GAP-mediated interaction between the ER-Golgi v-SNAREs and the COPI coat.
    Rein U; Andag U; Duden R; Schmitt HD; Spang A
    J Cell Biol; 2002 Apr; 157(3):395-404. PubMed ID: 11970962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro generation from the trans-Golgi network of coatomer-coated vesicles containing sialylated vesicular stomatitis virus-G protein.
    Simon JP; Ivanov IE; Adesnik M; Sabatini DD
    Methods; 2000 Apr; 20(4):437-54. PubMed ID: 10720465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The COPI system: molecular mechanisms and function.
    Beck R; Rawet M; Wieland FT; Cassel D
    FEBS Lett; 2009 Sep; 583(17):2701-9. PubMed ID: 19631211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GBF1, a guanine nucleotide exchange factor for ADP-ribosylation factors, is localized to the cis-Golgi and involved in membrane association of the COPI coat.
    Kawamoto K; Yoshida Y; Tamaki H; Torii S; Shinotsuka C; Yamashina S; Nakayama K
    Traffic; 2002 Jul; 3(7):483-95. PubMed ID: 12047556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport.
    Presley JF; Ward TH; Pfeifer AC; Siggia ED; Phair RD; Lippincott-Schwartz J
    Nature; 2002 May; 417(6885):187-93. PubMed ID: 12000962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane curvature and the control of GTP hydrolysis in Arf1 during COPI vesicle formation.
    Antonny B; Bigay J; Casella JF; Drin G; Mesmin B; Gounon P
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):619-22. PubMed ID: 16042557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of COPI vesicles and regulation of vesicle turnover.
    Taylor RJ; Tagiltsev G; Briggs JAG
    FEBS Lett; 2023 Mar; 597(6):819-835. PubMed ID: 36513395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scission of COPI and COPII vesicles is independent of GTP hydrolysis.
    Adolf F; Herrmann A; Hellwig A; Beck R; Brügger B; Wieland FT
    Traffic; 2013 Aug; 14(8):922-32. PubMed ID: 23691917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. COPI coat assembly occurs on liquid-disordered domains and the associated membrane deformations are limited by membrane tension.
    Manneville JB; Casella JF; Ambroggio E; Gounon P; Bertherat J; Bassereau P; Cartaud J; Antonny B; Goud B
    Proc Natl Acad Sci U S A; 2008 Nov; 105(44):16946-51. PubMed ID: 18974217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arf GAPs and membrane traffic.
    Nie Z; Randazzo PA
    J Cell Sci; 2006 Apr; 119(Pt 7):1203-11. PubMed ID: 16554436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.