BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 12381125)

  • 1. Gluconic acid, its lactones, and SO(2) binding phenomena in musts from botrytized grapes.
    Barbe JC; De Revel G; Bertrand A
    J Agric Food Chem; 2002 Oct; 50(22):6408-12. PubMed ID: 12381125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CIEL*a*b* parameters of white dehydrated grapes as quality markers according to chemical composition, volatile profile and mechanical properties.
    Rolle L; Giordano M; Giacosa S; Vincenzi S; Río Segade S; Torchio F; Perrone B; Gerbi V
    Anal Chim Acta; 2012 Jun; 732():105-13. PubMed ID: 22688041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of botrytized grape micro-organisms in SO2 binding phenomena.
    Barbe JC; De Revel G ; Joyeux A; Bertrand A; Lonvaud-Funel A
    J Appl Microbiol; 2001 Jan; 90(1):34-42. PubMed ID: 11155120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of carbonyl compounds in SO(2) binding phenomena in musts and wines from botrytized grapes.
    Barbe JC; de Revel G; Joyeux A; Lonvaud-Funel A; Bertrand A
    J Agric Food Chem; 2000 Aug; 48(8):3413-9. PubMed ID: 10956126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of a Schizosaccharomyces pombe mutant to reduce the content in gluconic acid of must obtained from rotten grapes.
    Peinado RA; Maestre O; Mauricio JC; Moreno JJ
    J Agric Food Chem; 2009 Mar; 57(6):2368-77. PubMed ID: 19243129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-proline proteins in experimental hazy white wine produced from partially botrytized grapes.
    Perutka Z; Šufeisl M; Strnad M; Šebela M
    Biotechnol Appl Biochem; 2019 May; 66(3):398-411. PubMed ID: 30715757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential application of a glucose-transport-deficient mutant of Schizosaccharomyces pombe for removing gluconic acid from grape must.
    Peinado RA; Moreno JJ; Medina M; Mauricio JC
    J Agric Food Chem; 2005 Feb; 53(4):1017-21. PubMed ID: 15713014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbiome dynamics during spontaneous fermentations of sound grapes in comparison with sour rot and Botrytis infected grapes.
    Lleixà J; Kioroglou D; Mas A; Portillo MDC
    Int J Food Microbiol; 2018 Sep; 281():36-46. PubMed ID: 29807290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A doped polyaniline modified electrode amperometric biosensor for gluconic acid determination in grapes.
    Albanese D; Malvano F; Sannini A; Pilloton R; Di Matteo M
    Sensors (Basel); 2014 Jun; 14(6):11097-109. PubMed ID: 24960084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aroma compounds and characteristics of noble-rot wines of Chardonnay grapes artificially botrytized in the vineyard.
    Wang XJ; Tao YS; Wu Y; An RY; Yue ZY
    Food Chem; 2017 Jul; 226():41-50. PubMed ID: 28254017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative protein profile analysis of wines made from Botrytis cinerea infected and healthy grapes reveals a novel biomarker for gushing in sparkling wine.
    Kupfer VM; Vogt EI; Ziegler T; Vogel RF; Niessen L
    Food Res Int; 2017 Sep; 99(Pt 1):501-509. PubMed ID: 28784511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the origins of Botrytis cinerea on earthy aromas from grape broth media further inoculated with Penicillium expansum.
    Morales-Valle H; Silva LC; Paterson RR; Venâncio A; Lima N
    Food Microbiol; 2011 Aug; 28(5):1048-53. PubMed ID: 21569951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated electrochemical gluconic acid biosensor based on self-assembled monolayer-modified gold electrodes. Application to the analysis of gluconic acid in musts and wines.
    Campuzano S; Gamella M; Serra B; Reviejo AJ; Pingarrón JM
    J Agric Food Chem; 2007 Mar; 55(6):2109-14. PubMed ID: 17323970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavior of Listeria monocytogenes in the presence of gluconic acid and during preparation of cottage cheese curd using gluconic acid.
    el-Shenawy MA; Marth EH
    J Dairy Sci; 1990 Jun; 73(6):1429-38. PubMed ID: 2117028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strength and lactone formation of gluconic acid.
    Skibsted LH; Kilde G
    Dan Tidsskr Farm; 1971; 45(9):320-4. PubMed ID: 5156698
    [No Abstract]   [Full Text] [Related]  

  • 16. Oxidation of Wine Polyphenols by Secretomes of Wild Botrytis cinerea Strains from White and Red Grape Varieties and Determination of Their Specific Laccase Activity.
    Zimdars S; Hitschler J; Schieber A; Weber F
    J Agric Food Chem; 2017 Dec; 65(48):10582-10590. PubMed ID: 29125293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postharvest grape infection of Botrytis cinerea and its interactions with other moulds under withering conditions to produce noble-rotten grapes.
    Lorenzini M; Azzolini M; Tosi E; Zapparoli G
    J Appl Microbiol; 2013 Mar; 114(3):762-70. PubMed ID: 23163324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saturated Linear Aliphatic γ- and δ-Lactones in Wine: A Review.
    Miller GC; Pilkington LI; Barker D; Deed RC
    J Agric Food Chem; 2022 Dec; 70(49):15325-15346. PubMed ID: 36469412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Odor detection thresholds and enantiomeric distributions of several 4-alkyl substituted gamma-lactones in Australian red wine.
    Cooke Née Brown RC; van Leeuwen KA; Capone DL; Gawel R; Elsey GM; Sefton MA
    J Agric Food Chem; 2009 Mar; 57(6):2462-7. PubMed ID: 19228057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the contribution of massoia lactone to the aroma of Merlot and Cabernet Sauvignon musts and wines.
    Pons A; Allamy L; Lavigne V; Dubourdieu D; Darriet P
    Food Chem; 2017 Oct; 232():229-236. PubMed ID: 28490069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.