BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 12381125)

  • 21. Botrytized wines.
    Magyar I
    Adv Food Nutr Res; 2011; 63():147-206. PubMed ID: 21867895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for protein degradation by Botrytis cinerea and relationships with alteration of synthetic wine foaming properties.
    Marchal R; Warchol M; Cilindre C; Jeandet P
    J Agric Food Chem; 2006 Jul; 54(14):5157-65. PubMed ID: 16819930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Schizosaccharomyces pombe on aromatic compounds in dry sherry wines containing high levels of gluconic acid.
    Peinado RA; Mauricio JC; Medina M; Moreno JJ
    J Agric Food Chem; 2004 Jul; 52(14):4529-34. PubMed ID: 15237962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [New analytic criteria for the characterization of wines].
    Sudraud P; Koziet J
    Ann Nutr Aliment; 1978; 32(5):1063-71. PubMed ID: 573085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gluconic acid consumption in wines by Schizosaccharomyces pombe and its effect on the concentrations of major volatile compounds and polyols.
    Peinado RA; Moreno JJ; Maestre O; Ortega JM; Medina M; Mauricio JC
    J Agric Food Chem; 2004 Feb; 52(3):493-7. PubMed ID: 14759138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Odorous impact of volatile thiols on the aroma of young botrytized sweet wines: identification and quantification of new sulfanyl alcohols.
    Sarrazin E; Shinkaruk S; Tominaga T; Bennetau B; Frérot E; Dubourdieu D
    J Agric Food Chem; 2007 Feb; 55(4):1437-44. PubMed ID: 17249683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oenological tannins to prevent Botrytis cinerea damage in grapes and musts: Kinetics and electrophoresis characterization of laccase.
    Vignault A; Gombau J; Jourdes M; Moine V; Canals JM; Fermaud M; Roudet J; Zamora F; Teissedre PL
    Food Chem; 2020 Jun; 316():126334. PubMed ID: 32044702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic influence of Botrytis cinerea infection in champagne base wine.
    Hong YS; Cilindre C; Liger-Belair G; Jeandet P; Hertkorn N; Schmitt-Kopplin P
    J Agric Food Chem; 2011 Jul; 59(13):7237-45. PubMed ID: 21604814
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model aging and oxidation effects on varietal, fermentative, and sulfur compounds in a dry botrytized red wine.
    Fedrizzi B; Zapparoli G; Finato F; Tosi E; Turri A; Azzolini M; Versini G
    J Agric Food Chem; 2011 Mar; 59(5):1804-13. PubMed ID: 21314124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The use of glucose oxidase and catalase for the enzymatic reduction of the potential ethanol content in wine.
    Röcker J; Schmitt M; Pasch L; Ebert K; Grossmann M
    Food Chem; 2016 Nov; 210():660-70. PubMed ID: 27211694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The formation of wine lactone from grape-derived secondary metabolites.
    Giaccio J; Capone DL; Håkansson AE; Smyth HE; Elsey GM; Sefton MA; Taylor DK
    J Agric Food Chem; 2011 Jan; 59(2):660-4. PubMed ID: 21189016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control strategies against grey mould (Botrytis cinerea Pers.: Fr) and corresponding fungicide residues in grapes and wines.
    Edder P; Ortelli D; Viret O; Cognard E; De Montmollin A; Zali O
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 May; 26(5):719-25. PubMed ID: 19680943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aromatic potential of botrytized white wine grapes: identification and quantification of new cysteine-S-conjugate flavor precursors.
    Thibon C; Shinkaruk S; Jourdes M; Bennetau B; Dubourdieu D; Tominaga T
    Anal Chim Acta; 2010 Feb; 660(1-2):190-6. PubMed ID: 20103162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries.
    Hong YS; Martinez A; Liger-Belair G; Jeandet P; Nuzillard JM; Cilindre C
    J Exp Bot; 2012 Oct; 63(16):5773-85. PubMed ID: 22945941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tastes, structure and solution properties of D-glucono-1,5-lactone.
    Parke SA; Birch GG; MacDougall DB; Stevens DA
    Chem Senses; 1997 Feb; 22(1):53-65. PubMed ID: 9056085
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationship between Menthiafolic Acid and Wine Lactone in Wine.
    Giaccio J; Curtin CD; Sefton MA; Taylor DK
    J Agric Food Chem; 2015 Sep; 63(37):8241-6. PubMed ID: 26321591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantification of several 4-alkyl substituted gamma-lactones in Australian wines.
    Cooke RC; Capone DL; van Leeuwen KA; Elsey GM; Sefton MA
    J Agric Food Chem; 2009 Jan; 57(2):348-52. PubMed ID: 19154158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water activity and temperature effects on growth and mycotoxin production by Alternaria alternata strains isolated from Malbec wine grapes.
    Prendes LP; Zachetti VG; Pereyra A; Morata de Ambrosini VI; Ramirez ML
    J Appl Microbiol; 2017 Feb; 122(2):481-492. PubMed ID: 27860113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural effects of oxidation on sugars: glucose as a precursor of gluconolactone and glucuronolactone.
    Parra-Santamaria M; Insausti A; Alonso ER; Basterretxea FJ; Cocinero EJ
    Chem Commun (Camb); 2024 May; 60(40):5302-5305. PubMed ID: 38661549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The crystal structure of D-galactono-gamma-lactone.
    Jeffrey GA; Rosenstein RD; Vlasse M
    Acta Crystallogr; 1967 May; 22(5):725-33. PubMed ID: 6072933
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.