These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 12381197)

  • 1. Molecular dynamics simulation study of the negative correlation in antibody AZ28-catalyzed oxy-cope rearrangement.
    Asada T; Gouda H; Kollman PA
    J Am Chem Soc; 2002 Oct; 124(42):12535-42. PubMed ID: 12381197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational effects in biological catalysis: an antibody-catalyzed oxy-cope rearrangement.
    Mundorff EC; Hanson MA; Varvak A; Ulrich H; Schultz PG; Stevens RC
    Biochemistry; 2000 Feb; 39(4):627-32. PubMed ID: 10651626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibody-catalyzed oxy-cope rearrangement: mechanism and origins of catalysis and stereoselectivity from DFT quantum mechanics and flexible docking.
    Black KA; Leach AG; Kalani MY; Houk KN
    J Am Chem Soc; 2004 Aug; 126(31):9695-708. PubMed ID: 15291573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoselectivity behavior of the AZ28 antibody catalyzed oxy-Cope rearrangement.
    Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    J Phys Chem A; 2006 Jan; 110(2):726-30. PubMed ID: 16405346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7.
    Chong LT; Duan Y; Wang L; Massova I; Kollman PA
    Proc Natl Acad Sci U S A; 1999 Dec; 96(25):14330-5. PubMed ID: 10588705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of hapten binding and catalytic determinants in a family of catalytic antibodies.
    Ulrich HD; Schultz PG
    J Mol Biol; 1998 Jan; 275(1):95-111. PubMed ID: 9451442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic and structural basis for transition-state stabilization in antibody-catalyzed hydrolysis.
    Oda M; Ito N; Tsumuraya T; Suzuki K; Sakakura M; Fujii I
    J Mol Biol; 2007 May; 369(1):198-209. PubMed ID: 17428500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A free energy calculation study of the effect of H-->F substitution on binding affinity in ligand-antibody interactions.
    Saito M; Okazaki I; Oda M; Fujii I
    J Comput Chem; 2005 Feb; 26(3):272-82. PubMed ID: 15614800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural evidence for substrate strain in antibody catalysis.
    Yin J; Andryski SE; Beuscher AE; Stevens RC; Schultz PG
    Proc Natl Acad Sci U S A; 2003 Feb; 100(3):856-61. PubMed ID: 12552112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interplay between binding energy and catalysis in the evolution of a catalytic antibody.
    Ulrich HD; Mundorff E; Santarsiero BD; Driggers EM; Stevens RC; Schultz PG
    Nature; 1997 Sep; 389(6648):271-5. PubMed ID: 9305839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forces and energetics of hapten-antibody dissociation: a biased molecular dynamics simulation study.
    Paci E; Caflisch A; Plückthun A; Karplus M
    J Mol Biol; 2001 Nov; 314(3):589-605. PubMed ID: 11846569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulation of a high-affinity antibody-protein complex: the binding site is a mosaic of locally flexible and preorganized rigid regions.
    Sinha N; Smith-Gill SJ
    Cell Biochem Biophys; 2005; 43(2):253-73. PubMed ID: 16049350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remarkable rate enhancement of orotidine 5'-monophosphate decarboxylase is due to transition-state stabilization rather than to ground-state destabilization.
    Warshel A; Strajbl M; Villà J; Florián J
    Biochemistry; 2000 Dec; 39(48):14728-38. PubMed ID: 11101287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L; Liang S; Pilcher MM; Meroueh SO
    Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunological optimization of a generic hydrophobic pocket for high affinity hapten binding and Diels-Alder activity.
    Piatesi A; Hilvert D
    Chembiochem; 2004 Apr; 5(4):460-6. PubMed ID: 15185369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient and selective p-nitrophenyl-ester-hydrolyzing antibodies elicited by a p-nitrobenzyl phosphonate hapten.
    Tawfik DS; Lindner AB; Chap R; Eshhar Z; Green BS
    Eur J Biochem; 1997 Mar; 244(2):619-26. PubMed ID: 9119032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural basis for transition-state stabilization in antibody-catalyzed hydrolysis: crystal structures of an abzyme at 1. 8 A resolution.
    Kristensen O; Vassylyev DG; Tanaka F; Morikawa K; Fujii I
    J Mol Biol; 1998 Aug; 281(3):501-11. PubMed ID: 9698565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed evolution governed by controlling the molecular recognition between an abzyme and its haptenic transition-state analog.
    Takahashi-Ando N; Kakinuma H; Fujii I; Nishi Y
    J Immunol Methods; 2004 Nov; 294(1-2):1-14. PubMed ID: 15604011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the complex of a catalytic antibody Fab fragment with a transition state analog: structural similarities in esterase-like catalytic antibodies.
    Charbonnier JB; Carpenter E; Gigant B; Golinelli-Pimpaneau B; Eshhar Z; Green BS; Knossow M
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11721-5. PubMed ID: 8524836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of formation of reactive conformers (NACs) for the Claisen rearrangement of chorismate to prephenate in water and in the E. coli mutase: the efficiency of the enzyme catalysis.
    Hur S; Bruice TC
    J Am Chem Soc; 2003 May; 125(19):5964-72. PubMed ID: 12733937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.