BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 12381323)

  • 1. Parallel channels and rate-limiting steps in complex protein folding reactions: prolyl isomerization and the alpha subunit of Trp synthase, a TIM barrel protein.
    Wu Y; Matthews CR
    J Mol Biol; 2002 Oct; 323(2):309-25. PubMed ID: 12381323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proline replacements and the simplification of the complex, parallel channel folding mechanism for the alpha subunit of Trp synthase, a TIM barrel protein.
    Wu Y; Matthews CR
    J Mol Biol; 2003 Jul; 330(5):1131-44. PubMed ID: 12860133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cis-prolyl peptide bond isomerization dominates the folding of the alpha subunit of Trp synthase, a TIM barrel protein.
    Wu Y; Matthews CR
    J Mol Biol; 2002 Sep; 322(1):7-13. PubMed ID: 12215410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dissection of the folding mechanism of the alpha subunit of tryptophan synthase: an amino-terminal autonomous folding unit controls several rate-limiting steps in the folding of a single domain protein.
    Zitzewitz JA; Matthews CR
    Biochemistry; 1999 Aug; 38(31):10205-14. PubMed ID: 10433729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of proline mutations on the folding of staphylococcal nuclease.
    Maki K; Ikura T; Hayano T; Takahashi N; Kuwajima K
    Biochemistry; 1999 Feb; 38(7):2213-23. PubMed ID: 10026306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic mechanism and catalysis of a native-state prolyl isomerization reaction.
    Pappenberger G; Bachmann A; Müller R; Aygün H; Engels JW; Kiefhaber T
    J Mol Biol; 2003 Feb; 326(1):235-46. PubMed ID: 12547205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The coordination of the isomerization of a conserved non-prolyl cis peptide bond with the rate-limiting steps in the folding of dihydrofolate reductase.
    Svensson AK; O'Neill JC; Matthews CR
    J Mol Biol; 2003 Feb; 326(2):569-83. PubMed ID: 12559923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium and kinetic analyses of unfolding and refolding for the conserved proline mutants of tryptophan synthase alpha subunit.
    Ogasahara K; Yutani K
    Biochemistry; 1997 Jan; 36(4):932-40. PubMed ID: 9020793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the slow folding reactions of trp aporepressor from Escherichia coli by mutational analysis of prolines and catalysis by a peptidyl-prolyl isomerase.
    Mann CJ; Shao X; Matthews CR
    Biochemistry; 1995 Nov; 34(44):14573-80. PubMed ID: 7578063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding mechanism of the alpha-subunit of tryptophan synthase, an alpha/beta barrel protein: global analysis highlights the interconversion of multiple native, intermediate, and unfolded forms through parallel channels.
    Bilsel O; Zitzewitz JA; Bowers KE; Matthews CR
    Biochemistry; 1999 Jan; 38(3):1018-29. PubMed ID: 9893998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An obligatory intermediate controls the folding of the alpha-subunit of tryptophan synthase, a TIM barrel protein.
    Wintrode PL; Rojsajjakul T; Vadrevu R; Matthews CR; Smith DL
    J Mol Biol; 2005 Apr; 347(5):911-9. PubMed ID: 15784252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli cyclophilin B binds a highly distorted form of trans-prolyl peptide isomer.
    Konno M; Sano Y; Okudaira K; Kawaguchi Y; Yamagishi-Ohmori Y; Fushinobu S; Matsuzawa H
    Eur J Biochem; 2004 Sep; 271(18):3794-803. PubMed ID: 15355356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization.
    Pierce MM; Nall BT
    J Mol Biol; 2000 May; 298(5):955-69. PubMed ID: 10801361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autocatalyzed protein folding.
    Veeraraghavan S; Holzman TF; Nall BT
    Biochemistry; 1996 Aug; 35(33):10601-7. PubMed ID: 8718848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equilibrium and kinetic folding pathways of a TIM barrel with a funneled energy landscape.
    Finke JM; Onuchic JN
    Biophys J; 2005 Jul; 89(1):488-505. PubMed ID: 15833999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topology and sequence in the folding of a TIM barrel protein: global analysis highlights partitioning between transient off-pathway and stable on-pathway folding intermediates in the complex folding mechanism of a (betaalpha)8 barrel of unknown function from B. subtilis.
    Forsyth WR; Bilsel O; Gu Z; Matthews CR
    J Mol Biol; 2007 Sep; 372(1):236-53. PubMed ID: 17619021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific structure appears at the N terminus in the sub-millisecond folding intermediate of the alpha subunit of tryptophan synthase, a TIM barrel protein.
    Wu Y; Vadrevu R; Yang X; Matthews CR
    J Mol Biol; 2005 Aug; 351(3):445-52. PubMed ID: 16023136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding mechanism of indole-3-glycerol phosphate synthase from Sulfolobus solfataricus: a test of the conservation of folding mechanisms hypothesis in (beta(alpha))(8) barrels.
    Forsyth WR; Matthews CR
    J Mol Biol; 2002 Jul; 320(5):1119-33. PubMed ID: 12126630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic models for unfolding and refolding of ribonuclease T1 with substitution of cis-proline 39 by alanine.
    Mayr LM; Schmid FX
    J Mol Biol; 1993 Jun; 231(3):913-26. PubMed ID: 8515460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of a rapidly formed intermediate in ribonuclease T1 folding.
    Kiefhaber T; Schmid FX; Willaert K; Engelborghs Y; Chaffotte A
    Protein Sci; 1992 Sep; 1(9):1162-72. PubMed ID: 1304394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.