These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 12381686)

  • 21. Sphingosine 1-phosphate enhances spontaneous transmitter release at the frog neuromuscular junction.
    Brailoiu E; Cooper RL; Dun NJ
    Br J Pharmacol; 2002 Aug; 136(8):1093-7. PubMed ID: 12163341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measurement of quantal secretion induced by ouabain and its correlation with depletion of synaptic vesicles.
    Haimann C; Torri-Tarelli F; Fesce R; Ceccarelli B
    J Cell Biol; 1985 Nov; 101(5 Pt 1):1953-65. PubMed ID: 3932368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes of quantal transmitter release caused by gadolinium ions at the frog neuromuscular junction.
    Molgó J; del Pozo E; Baños JE; Angaut-Petit D
    Br J Pharmacol; 1991 Sep; 104(1):133-8. PubMed ID: 1686201
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Further comparison of the effects of physostigmine and neostigmine on frog neuromuscular transmission.
    Alderdice MT
    Clin Exp Pharmacol Physiol; 1982; 9(1):35-43. PubMed ID: 6284424
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trifluoperazine-sensitive activation of the spontaneous transmitter release at the frog motor endplates by low doses of procaine.
    Brănişteanu DD; Brănişteanu DD; Haulică ID
    Naunyn Schmiedebergs Arch Pharmacol; 1987 Sep; 336(3):257-61. PubMed ID: 2891040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of ATP-sensitive K(+)-channel activators on transmitter release parameters at the frog neuromuscular junction.
    Salgado D; Shek EW; Alkadhi KA
    Brain Res; 1993 Apr; 609(1-2):307-12. PubMed ID: 8099524
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transmitter release: prepackaging and random mechanism or dynamic and deterministic process.
    Kriebel ME; Vautrin J; Holsapple J
    Brain Res Brain Res Rev; 1990; 15(2):167-78. PubMed ID: 1980833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of potassium on exocytosis of transmitter at the frog neuromuscular junction.
    Ceccarelli B; Fesce R; Grohovaz F; Haimann C
    J Physiol; 1988 Jul; 401():163-83. PubMed ID: 2902217
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inositol trisphosphate and cyclic adenosine diphosphate-ribose increase quantal transmitter release at frog motor nerve terminals: possible involvement of smooth endoplasmic reticulum.
    Brailoiu E; Miyamoto MD
    Neuroscience; 2000; 95(4):927-31. PubMed ID: 10682700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of an inhibitor of the synaptic vesicle acetylcholine transport system on quantal neurotransmitter release: an electrophysiological study.
    Lupa MT
    Brain Res; 1988 Sep; 461(1):118-26. PubMed ID: 3265645
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of black widow spider venom and Ca2+ on quantal secretion at the frog neuromuscular junction.
    Fesce R; Segal JR; Ceccarelli B; Hurlbut WP
    J Gen Physiol; 1986 Jul; 88(1):59-81. PubMed ID: 3488369
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coupling of L-type calcium channels to neurotransmitter release at mouse motor nerve terminals.
    Urbano FJ; Depetris RS; Uchitel OD
    Pflugers Arch; 2001 Mar; 441(6):824-31. PubMed ID: 11316267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dependence of spontaneous release at frog junctions on synaptic strength, external calcium and terminal length.
    Grinnell AD; Pawson PA
    J Physiol; 1989 Nov; 418():397-410. PubMed ID: 2576068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential regulation of transmitter release by presynaptic and glial Ca2+ internal stores at the neuromuscular synapse.
    Castonguay A; Robitaille R
    J Neurosci; 2001 Mar; 21(6):1911-22. PubMed ID: 11245676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The vasoactive peptide urotensin II stimulates spontaneous release from frog motor nerve terminals.
    Brailoiu E; Brailoiu GC; Miyamoto MD; Dun NJ
    Br J Pharmacol; 2003 Apr; 138(8):1580-8. PubMed ID: 12721114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calcium-independent increase of transmitter release at frog end-plate by trinitrobenzene sulphonic acid.
    Kijima H; Tanabe N
    J Physiol; 1988 Sep; 403():135-49. PubMed ID: 3150982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Miniature endplate potentials as a tool in neurotoxicology.
    Csicsaky M; Wiegand H; Uhlig S; Lohmann H; Papadopoulos R
    Toxicology; 1988 Apr; 49(1):121-9. PubMed ID: 2836968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acceleration by stannous ion of the evoked release of transmitter from motor nerve endings in the frog.
    Hattori T; Maehashi H
    Brain Res; 1988 Nov; 473(1):157-60. PubMed ID: 3264745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancement by Anemonia sulcata toxin II of spontaneous quantal transmitter release from mammalian motor nerve terminals.
    Molgo J; Lemeignan M; Tazieff-Depierre F
    Toxicon; 1986; 24(5):441-50. PubMed ID: 2872736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Ca2+ channel blockers on transmitter release and presynaptic currents at the frog neuromuscular junction.
    Katz E; Ferro PA; Cherksey BD; Sugimori M; Llinás R; Uchitel OD
    J Physiol; 1995 Aug; 486 ( Pt 3)(Pt 3):695-706. PubMed ID: 7473230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.