These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 12381719)

  • 1. Modification of the nucleotide cofactor-binding site of cytochrome P-450 reductase to enhance turnover with NADH in Vivo.
    Elmore CL; Porter TD
    J Biol Chem; 2002 Dec; 277(50):48960-4. PubMed ID: 12381719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction with arginine 597 of NADPH-cytochrome P-450 oxidoreductase is a primary source of the uniform binding energy used to discriminate between NADPH and NADH.
    Sem DS; Kasper CB
    Biochemistry; 1993 Nov; 32(43):11548-58. PubMed ID: 8218222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of a functional human NADH-dependent cytochrome P450 system.
    Döhr O; Paine MJ; Friedberg T; Roberts GC; Wolf CR
    Proc Natl Acad Sci U S A; 2001 Jan; 98(1):81-6. PubMed ID: 11136248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase.
    Marohnic CC; Bewley MC; Barber MJ
    Biochemistry; 2003 Sep; 42(38):11170-82. PubMed ID: 14503867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trp-676 facilitates nicotinamide coenzyme exchange in the reductive half-reaction of human cytochrome P450 reductase: properties of the soluble W676H and W676A mutant reductases.
    Gutierrez A; Doehr O; Paine M; Wolf CR; Scrutton NS; Roberts GC
    Biochemistry; 2000 Dec; 39(51):15990-9. PubMed ID: 11123926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aromatic substitution of the FAD-shielding tryptophan reveals its differential role in regulating electron flux in methionine synthase reductase and cytochrome P450 reductase.
    Meints CE; Simtchouk S; Wolthers KR
    FEBS J; 2013 Mar; 280(6):1460-74. PubMed ID: 23332101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands.
    Davis CA; Dhawan IK; Johnson MK; Barber MJ
    Arch Biochem Biophys; 2002 Apr; 400(1):63-75. PubMed ID: 11913972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing an artificial metabolic pathway: engineering the cofactor specificity of Corynebacterium 2,5-diketo-D-gluconic acid reductase for use in vitamin C biosynthesis.
    Banta S; Swanson BA; Wu S; Jarnagin A; Anderson S
    Biochemistry; 2002 May; 41(20):6226-36. PubMed ID: 12009883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutagenesis of Glycine 179 modulates both catalytic efficiency and reduced pyridine nucleotide specificity in cytochrome b5 reductase.
    Roma GW; Crowley LJ; Davis CA; Barber MJ
    Biochemistry; 2005 Oct; 44(41):13467-76. PubMed ID: 16216070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational evolution of the cofactor-binding site of cytochrome P450 reductase yields variants with increased activity towards specific cytochrome P450 enzymes.
    Strohmaier SJ; Huang W; Baek JM; Hunter DJB; Gillam EMJ
    FEBS J; 2019 Nov; 286(22):4473-4493. PubMed ID: 31276316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirements for cytochrome b5 in the oxidation of 7-ethoxycoumarin, chlorzoxazone, aniline, and N-nitrosodimethylamine by recombinant cytochrome P450 2E1 and by human liver microsomes.
    Yamazaki H; Nakano M; Gillam EM; Bell LC; Guengerich FP; Shimada T
    Biochem Pharmacol; 1996 Jul; 52(2):301-9. PubMed ID: 8694855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic analysis of cytochrome P450 reductase from Artemisia annua reveals accelerated rates of NADH-dependent flavin reduction.
    Simtchouk S; Eng JL; Meints CE; Makins C; Wolthers KR
    FEBS J; 2013 Dec; 280(24):6627-42. PubMed ID: 24299267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of pyridine nucleotide specificity of nitrate reductase: mutagenesis of recombinant cytochrome b reductase fragment of Neurospora crassa NADPH:Nitrate reductase.
    Shiraishi N; Croy C; Kaur J; Campbell WH
    Arch Biochem Biophys; 1998 Oct; 358(1):104-15. PubMed ID: 9750171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of NADPH in the interaction between heme oxygenase-1 and cytochrome P450 reductase.
    Higashimoto Y; Sakamoto H; Hayashi S; Sugishima M; Fukuyama K; Palmer G; Noguchi M
    J Biol Chem; 2005 Jan; 280(1):729-37. PubMed ID: 15516695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH-cytochrome P-450 oxidoreductase. The role of cysteine 566 in catalysis and cofactor binding.
    Shen AL; Christensen MJ; Kasper CB
    J Biol Chem; 1991 Oct; 266(30):19976-80. PubMed ID: 1939060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulative mechanisms in NADH- and NADPH-supported N-oxidation of 4-chloroaniline catalyzed by cytochrome b5-enriched rabbit liver microsomal fractions.
    Golly I; Hlavica P
    Biochim Biophys Acta; 1987 Jun; 913(2):219-27. PubMed ID: 3109485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of LYS271 and LYS279 residues in the interaction of cytochrome P4501A1 with NADPH-cytochrome P450 reductase.
    Cvrk T; Strobel HW
    Arch Biochem Biophys; 2001 Jan; 385(2):290-300. PubMed ID: 11368010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography.
    Petschacher B; Leitgeb S; Kavanagh KL; Wilson DK; Nidetzky B
    Biochem J; 2005 Jan; 385(Pt 1):75-83. PubMed ID: 15320875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.