BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 12381761)

  • 41. Motor patterns in human walking and running.
    Cappellini G; Ivanenko YP; Poppele RE; Lacquaniti F
    J Neurophysiol; 2006 Jun; 95(6):3426-37. PubMed ID: 16554517
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Different Segments within Vertebrate Muscles Can Operate on Different Regions of Their Force-Length Relationships.
    Ahn AN; Konow N; Tijs C; Biewener AA
    Integr Comp Biol; 2018 Aug; 58(2):219-231. PubMed ID: 29889253
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An anatomical and functional analysis of cat biceps femoris and semitendinosus muscles.
    English AW; Weeks OI
    J Morphol; 1987 Feb; 191(2):161-75. PubMed ID: 3560234
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Motor unit recruitment patterns 2: the influence of myoelectric intensity and muscle fascicle strain rate.
    Hodson-Tole EF; Wakeling JM
    J Exp Biol; 2008 Jun; 211(Pt 12):1893-902. PubMed ID: 18515719
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Differential modulation of descending signals from the reticulospinal system during reaching and locomotion.
    Dyson KS; Miron JP; Drew T
    J Neurophysiol; 2014 Nov; 112(10):2505-28. PubMed ID: 25143539
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of treadmill speed and gradient on equine hindlimb muscle activity.
    Crook TC; Wilson A; Hodson-Tole E
    Equine Vet J Suppl; 2010 Nov; (38):412-6. PubMed ID: 21059038
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Head pitch affects muscle activity in the decerebrate cat hindlimb during walking.
    Gottschall JS; Nichols TR
    Exp Brain Res; 2007 Sep; 182(1):131-5. PubMed ID: 17690872
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effects of speed on the in vivo activity and length of a limb muscle during the locomotion of the iguanian lizard Dipsosaurus dorsalis.
    Nelson FE; Jayne BC
    J Exp Biol; 2001 Oct; 204(Pt 20):3507-22. PubMed ID: 11707500
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adaptations in muscle activity to induced, short-term hindlimb lameness in trotting dogs.
    Fischer S; Nolte I; Schilling N
    PLoS One; 2013; 8(11):e80987. PubMed ID: 24236207
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microglial Morphology Across Distantly Related Species: Phylogenetic, Environmental and Age Influences on Microglia Reactivity and Surveillance States.
    Carvalho-Paulo D; Bento Torres Neto J; Filho CS; de Oliveira TCG; de Sousa AA; Dos Reis RR; Dos Santos ZA; de Lima CM; de Oliveira MA; Said NM; Freitas SF; Sosthenes MCK; Gomes GF; Henrique EP; Pereira PDC; de Siqueira LS; de Melo MAD; Guerreiro Diniz C; Magalhães NGM; Diniz JAP; Vasconcelos PFDC; Diniz DG; Anthony DC; Sherry DF; Brites D; Picanço Diniz CW
    Front Immunol; 2021; 12():683026. PubMed ID: 34220831
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Underground locomotion in moles: kinematic and electromyographic studies of locomotion in the Japanese mole (Mogera wogura).
    Wada N; Matsuo T; Kashimura A; Higurashi Y
    J Comp Physiol B; 2021 Mar; 191(2):411-425. PubMed ID: 33575865
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Absent phasing of respiratory and locomotor rhythms in running mice.
    Hérent C; Diem S; Fortin G; Bouvier J
    Elife; 2020 Dec; 9():. PubMed ID: 33258770
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Skeletal Muscle Shape Change in Relation to Varying Force Requirements Across Locomotor Conditions.
    Konow N; Collias A; Biewener AA
    Front Physiol; 2020; 11():143. PubMed ID: 32265722
    [TBL] [Abstract][Full Text] [Related]  

  • 54.
    Eng CM; Konow N; Tijs C; Holt NC; Biewener AA
    J Exp Biol; 2019 Dec; 222(Pt 24):. PubMed ID: 31753907
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ground reaction forces during walking with different load and slope combinations in rats.
    Bravenboer N; van Rens BTTM; van Essen HW; van Dieën JH; Lips P
    J Exp Orthop; 2017 Aug; 4(1):28. PubMed ID: 28861752
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb.
    Charles JP; Cappellari O; Spence AJ; Hutchinson JR; Wells DJ
    PLoS One; 2016; 11(4):e0147669. PubMed ID: 27115354
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Geckos decouple fore- and hind limb kinematics in response to changes in incline.
    Birn-Jeffery AV; Higham TE
    Front Zool; 2016; 13():11. PubMed ID: 26941828
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Locomotion as an emergent property of muscle contractile dynamics.
    Biewener AA
    J Exp Biol; 2016 Jan; 219(Pt 2):285-94. PubMed ID: 26792341
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The metabolic cost of walking on an incline in the Peacock (Pavo cristatus).
    Wilkinson H; Thavarajah N; Codd J
    PeerJ; 2015; 3():e987. PubMed ID: 26056619
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alterations in the rate of limb movement using a lower body positive pressure treadmill do not influence respiratory rate or phase III ventilation.
    Buono MJ; Burnsed-Torres M; Hess B; Lopez K; Ortiz C; Girodo A; Lolli K; Bloom B; Bailey D; Kolkhorst FW
    Biomed Res Int; 2015; 2015():618291. PubMed ID: 25654116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.