These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

505 related articles for article (PubMed ID: 12381794)

  • 21. Detailed microscopic study of the full zipA:FtsZ interface.
    Moreira IS; Fernandes PA; Ramos MJ
    Proteins; 2006 Jun; 63(4):811-21. PubMed ID: 16538616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular insight into the interaction between IFABP and PA by using MM-PBSA and alanine scanning methods.
    Zou H; Luo C; Zheng S; Luo X; Zhu W; Chen K; Shen J; Jiang H
    J Phys Chem B; 2007 Aug; 111(30):9104-13. PubMed ID: 17602517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein binding hot spots and the residue-residue pairing preference: a water exclusion perspective.
    Liu Q; Li J
    BMC Bioinformatics; 2010 May; 11():244. PubMed ID: 20462403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hot regions in protein--protein interactions: the organization and contribution of structurally conserved hot spot residues.
    Keskin O; Ma B; Nussinov R
    J Mol Biol; 2005 Feb; 345(5):1281-94. PubMed ID: 15644221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical study of the ligand-CYP2B4 complexes: effect of structure on binding free energies and heme spin state.
    Harris DL; Park JY; Gruenke L; Waskell L
    Proteins; 2004 Jun; 55(4):895-914. PubMed ID: 15146488
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-based method for analyzing protein-protein interfaces.
    Gao Y; Wang R; Lai L
    J Mol Model; 2004 Feb; 10(1):44-54. PubMed ID: 14634848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the interactions of human ribonuclease inhibitor with angiogenin and ribonuclease A by mutagenesis: importance of inhibitor residues inside versus outside the C-terminal "hot spot".
    Shapiro R; Ruiz-Gutierrez M; Chen CZ
    J Mol Biol; 2000 Sep; 302(2):497-519. PubMed ID: 10970748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteins feel more than they see: fine-tuning of binding affinity by properties of the non-interacting surface.
    Kastritis PL; Rodrigues JP; Folkers GE; Boelens R; Bonvin AM
    J Mol Biol; 2014 Jul; 426(14):2632-52. PubMed ID: 24768922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility.
    Xia JF; Zhao XM; Song J; Huang DS
    BMC Bioinformatics; 2010 Apr; 11():174. PubMed ID: 20377884
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing binding hot spots at protein-RNA recognition sites.
    Barik A; Nithin C; Karampudi NB; Mukherjee S; Bahadur RP
    Nucleic Acids Res; 2016 Jan; 44(2):e9. PubMed ID: 26365245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing the effect of point mutations at protein-protein interfaces with free energy calculations.
    Almlöf M; Aqvist J; Smalås AO; Brandsdal BO
    Biophys J; 2006 Jan; 90(2):433-42. PubMed ID: 16272444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complementarity of stability patches at the interfaces of protein complexes: Implication for the structural organization of energetic hot spots.
    Kuttner YY; Engel S
    Proteins; 2018 Feb; 86(2):229-236. PubMed ID: 29178591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Boosting prediction performance of protein-protein interaction hot spots by using structural neighborhood properties.
    Deng L; Guan J; Wei X; Yi Y; Zhang QC; Zhou S
    J Comput Biol; 2013 Nov; 20(11):878-91. PubMed ID: 24134392
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein-protein recognition: an experimental and computational study of the R89K mutation in Raf and its effect on Ras binding.
    Zeng J; Fridman M; Maruta H; Treutlein HR; Simonson T
    Protein Sci; 1999 Jan; 8(1):50-64. PubMed ID: 10210183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A structure-based model for the prediction of protein-RNA binding affinity.
    Nithin C; Mukherjee S; Bahadur RP
    RNA; 2019 Dec; 25(12):1628-1645. PubMed ID: 31395671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling Binding Affinity of Pathological Mutations for Computational Protein Design.
    Romero-Durana M; Pallara C; Glaser F; Fernández-Recio J
    Methods Mol Biol; 2017; 1529():139-159. PubMed ID: 27914049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L; Liang S; Pilcher MM; Meroueh SO
    Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure-based protocol for identifying mutations that enhance protein-protein binding affinities.
    Sammond DW; Eletr ZM; Purbeck C; Kimple RJ; Siderovski DP; Kuhlman B
    J Mol Biol; 2007 Aug; 371(5):1392-404. PubMed ID: 17603074
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy.
    Tuncbag N; Gursoy A; Keskin O
    Bioinformatics; 2009 Jun; 25(12):1513-20. PubMed ID: 19357097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crucial importance of the water-entropy effect in predicting hot spots in protein-protein complexes.
    Oshima H; Yasuda S; Yoshidome T; Ikeguchi M; Kinoshita M
    Phys Chem Chem Phys; 2011 Sep; 13(36):16236-46. PubMed ID: 21842056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.