These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 12381855)

  • 1. Prediction of the disulfide-bonding state of cysteines in proteins at 88% accuracy.
    Martelli PL; Fariselli P; Malaguti L; Casadio R
    Protein Sci; 2002 Nov; 11(11):2735-9. PubMed ID: 12381855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of evolutionary information in predicting the disulfide-bonding state of cysteine in proteins.
    Fariselli P; Riccobelli P; Casadio R
    Proteins; 1999 Aug; 36(3):340-6. PubMed ID: 10409827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the disulfide bonding state of cysteines in proteins with hidden neural networks.
    Martelli PL; Fariselli P; Malaguti L; Casadio R
    Protein Eng; 2002 Dec; 15(12):951-3. PubMed ID: 12601133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the disulfide-bonding state of cysteines in proteins based on dipeptide composition.
    Song JN; Wang ML; Li WJ; Xu WB
    Biochem Biophys Res Commun; 2004 May; 318(1):142-7. PubMed ID: 15110765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of disulfide-bonded cysteines in proteomes with a hidden neural network.
    Martelli PL; Fariselli P; Casadio R
    Proteomics; 2004 Jun; 4(6):1665-71. PubMed ID: 15174135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disulfide connectivity prediction based on structural information without a prior knowledge of the bonding state of cysteines.
    Lin HH; Hsu JC; Hsu YN; Pan RH; Chen YF; Tseng LY
    Comput Biol Med; 2013 Nov; 43(11):1941-8. PubMed ID: 24209939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DISULFIND: a disulfide bonding state and cysteine connectivity prediction server.
    Ceroni A; Passerini A; Vullo A; Frasconi P
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W177-81. PubMed ID: 16844986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the disulfide bonding state of cysteines using protein descriptors.
    Mucchielli-Giorgi MH; Hazout S; Tufféry P
    Proteins; 2002 Feb; 46(3):243-9. PubMed ID: 11835499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of the disulfide-bonding state of cysteine in proteins.
    Muskal SM; Holbrook SR; Kim SH
    Protein Eng; 1990 Aug; 3(8):667-72. PubMed ID: 2217140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DiANNA: a web server for disulfide connectivity prediction.
    Ferrè F; Clote P
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W230-2. PubMed ID: 15980459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural networks, and weighted graph matching.
    Cheng J; Saigo H; Baldi P
    Proteins; 2006 Mar; 62(3):617-29. PubMed ID: 16320312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteine separations profiles on protein sequences infer disulfide connectivity.
    Zhao E; Liu HL; Tsai CH; Tsai HK; Chan CH; Kao CY
    Bioinformatics; 2005 Apr; 21(8):1415-20. PubMed ID: 15585533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disulfide connectivity prediction using recursive neural networks and evolutionary information.
    Vullo A; Frasconi P
    Bioinformatics; 2004 Mar; 20(5):653-9. PubMed ID: 15033872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperativity of the oxidization of cysteines in globular proteins.
    Jiang-Ning S; Wei-Jiang L; Wen-Bo X
    J Theor Biol; 2004 Nov; 231(1):85-95. PubMed ID: 15363931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disulfide connectivity prediction using secondary structure information and diresidue frequencies.
    Ferrè F; Clote P
    Bioinformatics; 2005 May; 21(10):2336-46. PubMed ID: 15741247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving disulfide connectivity prediction with sequential distance between oxidized cysteines.
    Tsai CH; Chen BJ; Chan CH; Liu HL; Kao CY
    Bioinformatics; 2005 Dec; 21(24):4416-9. PubMed ID: 16223789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of factors that induce cysteine bonding state.
    Karami Z; Abdolmaleki P; Rezaei MA; Jahandideh S; Asadabadi EB
    Comput Biol Med; 2009 Apr; 39(4):332-9. PubMed ID: 19246035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of ubiquitin proteins using artificial neural networks, hidden markov model and support vector machines.
    Jaiswal K
    In Silico Biol; 2007; 7(6):559-68. PubMed ID: 18467768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disulfide connectivity prediction with 70% accuracy using two-level models.
    Chen BJ; Tsai CH; Chan CH; Kao CY
    Proteins; 2006 Jul; 64(1):246-52. PubMed ID: 16615141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.