BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 12382039)

  • 1. Anaerobic sugar catabolism in Lactococcus lactis: genetic regulation and enzyme control over pathway flux.
    Cocaign-Bousquet M; Even S; Lindley ND; Loubière P
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):24-32. PubMed ID: 12382039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism.
    Garrigues C; Mercade M; Cocaign-Bousquet M; Lindley ND; Loubiere P
    Biotechnol Bioeng; 2001 Jul; 74(2):108-15. PubMed ID: 11369999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis.
    Melchiorsen CR; Jokumsen KV; Villadsen J; Israelsen H; Arnau J
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):338-44. PubMed ID: 11935185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overview on sugar metabolism and its control in Lactococcus lactis - the input from in vivo NMR.
    Neves AR; Pool WA; Kok J; Kuipers OP; Santos H
    FEMS Microbiol Rev; 2005 Aug; 29(3):531-54. PubMed ID: 15939503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Carbohydrate metabolism and lactic acid biosynthesis of Lactococcus lactis subsp. lactis KLDS4.0325].
    Yang X; Wang Y; Zhou Y; Gao X; Bailiang L; Huo G
    Wei Sheng Wu Xue Bao; 2014 Oct; 54(10):1146-54. PubMed ID: 25803891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1.
    Tanaka K; Komiyama A; Sonomoto K; Ishizaki A; Hall SJ; Stanbury PF
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):160-7. PubMed ID: 12382058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L+-lactic acid production from starch by a novel amylolytic Lactococcus lactis subsp. lactis B84.
    Petrov K; Urshev Z; Petrova P
    Food Microbiol; 2008 Jun; 25(4):550-7. PubMed ID: 18456109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiology of pyruvate metabolism in Lactococcus lactis.
    Cocaign-Bousquet M; Garrigues C; Loubiere P; Lindley ND
    Antonie Van Leeuwenhoek; 1996 Oct; 70(2-4):253-67. PubMed ID: 8879410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH.
    Mercade M; Cocaign-Bousquet M; Loubière P
    J Appl Microbiol; 2006 Jun; 100(6):1364-72. PubMed ID: 16696685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural diversity and adaptive responses of Lactococcus lactis.
    van Hylckama Vlieg JE; Rademaker JL; Bachmann H; Molenaar D; Kelly WJ; Siezen RJ
    Curr Opin Biotechnol; 2006 Apr; 17(2):183-90. PubMed ID: 16517150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of pyruvate metabolism in Lactococcus lactis.
    Melchiorsen CR; Jensen NB; Christensen B; Vaever Jokumsen K; Villadsen J
    Biotechnol Bioeng; 2001 Aug; 74(4):271-9. PubMed ID: 11410851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio.
    Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M
    J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved homo L-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis.
    Shinkawa S; Okano K; Yoshida S; Tanaka T; Ogino C; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1537-44. PubMed ID: 21637940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement in lactic acid production from starch using alpha-amylase-secreting Lactococcus lactis cells adapted to maltose or starch.
    Okano K; Kimura S; Narita J; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2007 Jul; 75(5):1007-13. PubMed ID: 17384945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-fermentation of glucose and citrate by Lactococcus lactis diacetylactis: quantification of the relative metabolic rates by isotopic analysis at natural abundance.
    Goupry S; Gentil E; Akoka S; Robins RJ
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):489-97. PubMed ID: 12750852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth kinetics of Lactococcus lactis ssp diacetylactis harboring different plasmid content.
    Lee K; Moon SH
    Curr Microbiol; 2003 Jul; 47(1):17-21. PubMed ID: 12783187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental determination of control of glycolysis in Lactococcus lactis.
    Koebmann BJ; Andersen HW; Solem C; Jensen PR
    Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):237-48. PubMed ID: 12369190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of Nisin production from whey by a mixed culture of Lactococcus lactis and Saccharomyces cerevisiae.
    Liu C; Hu B; Liu Y; Chen S
    Appl Biochem Biotechnol; 2006 Mar; 131(1-3):751-61. PubMed ID: 18563651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of nisin production from whey by a mixed culture of Lactococcus lactis and Saccharomyces cerevisiae.
    Liu C; Hu B; Liu Y; Chen S
    Appl Biochem Biotechnol; 2006; 129-132():751-61. PubMed ID: 16915685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.