These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1030 related articles for article (PubMed ID: 12382069)
1. Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Seifert R; Wenzel-Seifert K Naunyn Schmiedebergs Arch Pharmacol; 2002 Nov; 366(5):381-416. PubMed ID: 12382069 [TBL] [Abstract][Full Text] [Related]
2. Functional differences between full and partial agonists: evidence for ligand-specific receptor conformations. Seifert R; Wenzel-Seifert K; Gether U; Kobilka BK J Pharmacol Exp Ther; 2001 Jun; 297(3):1218-26. PubMed ID: 11356949 [TBL] [Abstract][Full Text] [Related]
3. Use of constitutive G protein-coupled receptor activity for drug discovery. Chen G; Way J; Armour S; Watson C; Queen K; Jayawickreme CK; Chen WJ; Kenakin T Mol Pharmacol; 2000 Jan; 57(1):125-34. PubMed ID: 10617687 [TBL] [Abstract][Full Text] [Related]
4. Inverse agonists: tools to reveal ligand-specific conformations of G protein-coupled receptors. Prather PL Sci STKE; 2004 Jan; 2004(215):pe1. PubMed ID: 14722344 [TBL] [Abstract][Full Text] [Related]
5. Sf9 cells: a versatile model system to investigate the pharmacological properties of G protein-coupled receptors. Schneider EH; Seifert R Pharmacol Ther; 2010 Dec; 128(3):387-418. PubMed ID: 20705094 [TBL] [Abstract][Full Text] [Related]
6. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Kristiansen K Pharmacol Ther; 2004 Jul; 103(1):21-80. PubMed ID: 15251227 [TBL] [Abstract][Full Text] [Related]
7. Protean effects of a natural peptide agonist of the G protein-coupled secretin receptor demonstrated by receptor mutagenesis. Ganguli SC; Park CG; Holtmann MH; Hadac EM; Kenakin TP; Miller LJ J Pharmacol Exp Ther; 1998 Aug; 286(2):593-8. PubMed ID: 9694908 [TBL] [Abstract][Full Text] [Related]
8. Point mutations in either subunit of the GABAB receptor confer constitutive activity to the heterodimer. Mukherjee RS; McBride EW; Beinborn M; Dunlap K; Kopin AS Mol Pharmacol; 2006 Oct; 70(4):1406-13. PubMed ID: 16847143 [TBL] [Abstract][Full Text] [Related]
9. The human formyl peptide receptor as model system for constitutively active G-protein-coupled receptors. Seifert R; Wenzel-Seifert K Life Sci; 2003 Sep; 73(18):2263-80. PubMed ID: 12941430 [TBL] [Abstract][Full Text] [Related]
10. Constitutive activity and inverse agonism at the alpha1adrenoceptors. Cotecchia S Biochem Pharmacol; 2007 Apr; 73(8):1076-83. PubMed ID: 17125741 [TBL] [Abstract][Full Text] [Related]
11. Coexpression systems as models for the analysis of constitutive GPCR activity. Schneider EH; Seifert R Methods Enzymol; 2010; 485():527-57. PubMed ID: 21050935 [TBL] [Abstract][Full Text] [Related]
12. The use of constitutively active receptors for drug discovery at the G protein-coupled receptor gene pool. Behan DP; Chalmers DT Curr Opin Drug Discov Devel; 2001 Sep; 4(5):548-60. PubMed ID: 12825451 [TBL] [Abstract][Full Text] [Related]
13. G protein-coupled receptors: a count of 1001 conformations. Vauquelin G; Van Liefde I Fundam Clin Pharmacol; 2005 Feb; 19(1):45-56. PubMed ID: 15660959 [TBL] [Abstract][Full Text] [Related]
14. Constitutively active μ-opioid receptors. Connor M; Traynor J Methods Enzymol; 2010; 484():445-69. PubMed ID: 21036245 [TBL] [Abstract][Full Text] [Related]
15. Mutations of Cys-17 and Ala-271 in the human histamine H2 receptor determine the species selectivity of guanidine-type agonists and increase constitutive activity. Preuss H; Ghorai P; Kraus A; Dove S; Buschauer A; Seifert R J Pharmacol Exp Ther; 2007 Jun; 321(3):975-82. PubMed ID: 17347323 [TBL] [Abstract][Full Text] [Related]
16. Ligand function at constitutively active receptor mutants is affected by two distinct yet interacting mechanisms. Beinborn M; Ren Y; Bläker M; Chen C; Kopin AS Mol Pharmacol; 2004 Mar; 65(3):753-60. PubMed ID: 14978254 [TBL] [Abstract][Full Text] [Related]
17. Stoichiometry and compartmentation in G protein-coupled receptor signaling: implications for therapeutic interventions involving G(s). Ostrom RS; Post SR; Insel PA J Pharmacol Exp Ther; 2000 Aug; 294(2):407-12. PubMed ID: 10900212 [TBL] [Abstract][Full Text] [Related]
18. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors. Bhattacharya S; Hall SE; Vaidehi N J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482 [TBL] [Abstract][Full Text] [Related]
19. Molecular tinkering of G protein-coupled receptors: an evolutionary success. Bockaert J; Pin JP EMBO J; 1999 Apr; 18(7):1723-9. PubMed ID: 10202136 [TBL] [Abstract][Full Text] [Related]
20. The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Rovati GE; Capra V; Neubig RR Mol Pharmacol; 2007 Apr; 71(4):959-64. PubMed ID: 17192495 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]