BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 12382110)

  • 1. Genes and derived amino acid sequences of S-layer proteins from mesophilic, thermophilic, and extremely thermophilic methanococci.
    Akca E; Claus H; Schultz N; Karbach G; Schlott B; Debaerdemaeker T; Declercq JP; König H
    Extremophiles; 2002 Oct; 6(5):351-8. PubMed ID: 12382110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of flagellum gene families of methanogenic archaea and localization of novel flagellum accessory proteins.
    Thomas NA; Jarrell KF
    J Bacteriol; 2001 Dec; 183(24):7154-64. PubMed ID: 11717274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environment specific substitution tables for thermophilic proteins.
    Mizuguchi K; Sele M; Cubellis MV
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S15. PubMed ID: 17430559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of a trimeric archaeal adenylate kinase from the mesophile Methanococcus maripaludis with an unusually broad functional range and thermal stability.
    Davlieva M; Shamoo Y
    Proteins; 2010 Feb; 78(2):357-64. PubMed ID: 19731371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further evidence to suggest that archaeal flagella are related to bacterial type IV pili.
    Bayley DP; Jarrell KF
    J Mol Evol; 1998 Mar; 46(3):370-3. PubMed ID: 9493362
    [No Abstract]   [Full Text] [Related]  

  • 6. Primary structure of selected archaeal mesophilic and extremely thermophilic outer surface layer proteins.
    Claus H; Akça E; Debaerdemaeker T; Evrard C; Declercq JP; König H
    Syst Appl Microbiol; 2002 Apr; 25(1):3-12. PubMed ID: 12086185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of hyper-variable Corynebacterium glutamicum surface-layer proteins by sequence analyses and atomic force microscopy.
    Hansmeier N; Bartels FW; Ros R; Anselmetti D; Tauch A; Pühler A; Kalinowski J
    J Biotechnol; 2004 Aug; 112(1-2):177-93. PubMed ID: 15288952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and hydride transfer mechanism of a moderate thermophilic dihydrofolate reductase from Bacillus stearothermophilus and comparison to its mesophilic and hyperthermophilic homologues.
    Kim HS; Damo SM; Lee SY; Wemmer D; Klinman JP
    Biochemistry; 2005 Aug; 44(34):11428-39. PubMed ID: 16114879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability.
    Christodoulou E; Rypniewski WR; Vorgias CR
    Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species.
    Haney PJ; Badger JH; Buldak GL; Reich CI; Woese CR; Olsen GJ
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3578-83. PubMed ID: 10097079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A small, thermostable, and monofunctional chorismate mutase from the archaeon Methanococcus jannaschii.
    MacBeath G; Kast P; Hilvert D
    Biochemistry; 1998 Jul; 37(28):10062-73. PubMed ID: 9665711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions.
    Engelhardt H; Peters J
    J Struct Biol; 1998 Dec; 124(2-3):276-302. PubMed ID: 10049812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and functional characterization of a chaperone from Methanococcus jannaschii.
    Kowalski JM; Kelly RM; Konisky J; Clark DS; Wittrup KD
    Syst Appl Microbiol; 1998 Jun; 21(2):173-8. PubMed ID: 9704106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and organization of the hisA gene of the thermophilic archaebacterium Methanococcus thermolithotrophicus.
    Weil CF; Beckler GS; Reeve JN
    J Bacteriol; 1987 Oct; 169(10):4857-60. PubMed ID: 3115964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins.
    Pack SP; Yoo YJ
    J Biotechnol; 2004 Aug; 111(3):269-77. PubMed ID: 15246663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid coupling patterns in thermophilic proteins.
    Liang HK; Huang CM; Ko MT; Hwang JK
    Proteins; 2005 Apr; 59(1):58-63. PubMed ID: 15688447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methanococcus vannielii selenium metabolism: purification and N-terminal amino acid sequences of a novel selenium-binding protein and selenocysteine lyase.
    Stadtman T
    IUBMB Life; 2004 Jul; 56(7):427-31. PubMed ID: 15545220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms.
    Glyakina AV; Garbuzynskiy SO; Lobanov MY; Galzitskaya OV
    Bioinformatics; 2007 Sep; 23(17):2231-8. PubMed ID: 17599925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria.
    Fukuchi S; Nishikawa K
    J Mol Biol; 2001 Jun; 309(4):835-43. PubMed ID: 11399062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and functional analysis of the genes encoding dibenzothiophene-desulfurizing enzymes from thermophilic bacteria.
    Kirimura K; Harada K; Iwasawa H; Tanaka T; Iwasaki Y; Furuya T; Ishii Y; Kino K
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):703-13. PubMed ID: 15221222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.