BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 12382117)

  • 1. Increased stability of malate dehydrogenase from Halobacterium salinarum at low salt concentration in reverse micelles.
    Piera-Velázquez S; Marhuenda-Egea F; Cadenas E
    Extremophiles; 2002 Oct; 6(5):407-12. PubMed ID: 12382117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of an extreme halophilic alkaline phosphatase from Halobacterium salinarium in non-conventional medium.
    Marhuenda-Egea FC; Piera-Velázquez S; Cadenas C; Cadenas E
    J Biotechnol; 2001 May; 87(3):255-61. PubMed ID: 11334667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An extreme halophilic enzyme active at low salt in reversed micelles.
    Marhuenda-Egea FC; Piera-Velázquez S; Cadenas C; Cadenas E
    J Biotechnol; 2002 Feb; 93(2):159-64. PubMed ID: 11738722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse micelles in organic solvents: a medium for the biotechnological use of extreme halophilic enzymes at low salt concentration.
    Marhuenda-Egea FC; Piera-Velázquez S; Cadenas C; Cadenas E
    Archaea; 2002 Sep; 1(2):105-11. PubMed ID: 15803648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability against denaturation mechanisms in halophilic malate dehydrogenase "adapt" to solvent conditions.
    Bonneté F; Madern D; Zaccaï G
    J Mol Biol; 1994 Dec; 244(4):436-47. PubMed ID: 7990132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular adaptation: the malate dehydrogenase from the extreme halophilic bacterium Salinibacter ruber behaves like a non-halophilic protein.
    Madern D; Zaccai G
    Biochimie; 2004; 86(4-5):295-303. PubMed ID: 15194233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of adaptation of an atypical alkaline p-nitrophenyl phosphatase from the archaeon Halobacterium salinarum at low-water environments.
    Marhuenda-Egea FC; Piera-Velázquez S; Cadenas C; Cadenas E
    Biotechnol Bioeng; 2002 Jun; 78(5):497-502. PubMed ID: 12115118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Stability of glucose 6-phosphate dehydrogenase complexed with its substrate and/or cofactor in aqueous and micellar environment].
    Puchkaev AV; Vlasov AP; Metelitsa DI
    Prikl Biokhim Mikrobiol; 2002; 38(1):44-52. PubMed ID: 11852566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The search for traces of life: the protective effect of salt on biological macromolecules.
    Tehei M; Franzetti B; Maurel MC; Vergne J; Hountondji C; Zaccai G
    Extremophiles; 2002 Oct; 6(5):427-30. PubMed ID: 12382120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Halophile aldehyde dehydrogenase from Halobacterium salinarum.
    Kim HJ; Joo WA; Cho CW; Kim CW
    J Proteome Res; 2006 Jan; 5(1):192-5. PubMed ID: 16396511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global protein-level responses of Halobacterium salinarum NRC-1 to prolonged changes in external sodium chloride concentrations.
    Leuko S; Raftery MJ; Burns BP; Walter MR; Neilan BA
    J Proteome Res; 2009 May; 8(5):2218-25. PubMed ID: 19206189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic regulation of an alkaline p-nitrophenylphosphate phosphatase from Halobacterium salinarum in low water system by Mn2+ and monovalent cations.
    Marhuenda-Egea FC; Piera-Velázquez S; Cadenas C; Cadenas E
    FEMS Microbiol Lett; 2001 May; 198(2):111-5. PubMed ID: 11430399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity and conformation changes of Chinese hamster dihydrofolate reductase in reverse micelles.
    Zhu H; Fan YX; Shi N; Zhou JM
    Arch Biochem Biophys; 1999 Aug; 368(1):61-6. PubMed ID: 10415112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of low temperature induced water shedding from AOT reverse micelles.
    Simorellis AK; Van Horn WD; Flynn PF
    J Am Chem Soc; 2006 Apr; 128(15):5082-90. PubMed ID: 16608342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reverse micelles as a versatile medium for the study of lactate dehydrogenase in vitro.
    Katiyar SS; Awasthi AK; Kumar A
    Biochem Int; 1988 Dec; 17(6):1165-70. PubMed ID: 3245846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of ultraviolet radiation on the moderate halophile Halomonas elongata and the extreme halophile Halobacterium salinarum.
    Martin EL; Reinhardt RL; Baum LL; Becker MR; Shaffer JJ; Kokjohn TA
    Can J Microbiol; 2000 Feb; 46(2):180-7. PubMed ID: 10721487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of mutations at Gly114 on the stability and refolding of Haloarchaeal nucleoside diphosphate kinase in low salt solution.
    Ishibashi M; Iwasa T; Kumeda K; Arakawa T; Tokunaga M
    Int J Biol Macromol; 2009 May; 44(4):361-4. PubMed ID: 19428467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The phenomenon of super activity in dihydrofolate reductase entrapped inside reverse micelles in apolar solvents.
    Katiyar SS; Kumar A; Kumar A
    Biochem Int; 1989 Sep; 19(3):547-52. PubMed ID: 2818611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PROPERTIES OF A PURIFIED HALOPHILIC MALIC DEHYDROGENASE.
    HOLMES PK; HALVORSON HO
    J Bacteriol; 1965 Aug; 90(2):316-26. PubMed ID: 14329442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of tyrosinase in AOT-isooctane reverse micelles.
    Bru R; Sanchez-Ferrer A; García-Carmona F
    Biotechnol Bioeng; 1989 Jul; 34(3):304-8. PubMed ID: 18588108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.