These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 12382174)

  • 1. Shunt assistant valve: bench test investigations and clinical performance.
    Tokoro K; Suzuki S; Chiba Y; Tsuda M
    Childs Nerv Syst; 2002 Oct; 18(9-10):492-9. PubMed ID: 12382174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable Shunt Assistant tested in Cambridge shunt evaluation laboratory.
    Czosnyka M; Czosnyka Z; Pickard JD
    Acta Neurochir Suppl; 2012; 113():71-6. PubMed ID: 22116427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CSF outflow resistance as predictor of shunt function. A long-term study.
    Malm J; Lundkvist B; Eklund A; Koskinen LO; Kristensen B
    Acta Neurol Scand; 2004 Sep; 110(3):154-60. PubMed ID: 15285771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seven years of clinical experience with the programmable Codman Hakim valve: a retrospective study of 583 patients.
    Zemack G; Romner B
    J Neurosurg; 2000 Jun; 92(6):941-8. PubMed ID: 10839253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of anti-siphon devices in the treatment of pediatric hydrocephalus.
    Tokoro K; Chiba Y; Abe H; Tanaka N; Yamataki A; Kanno H
    Childs Nerv Syst; 1994 May; 10(4):236-8. PubMed ID: 7923233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posture-related overdrainage: comparison of the performance of 10 hydrocephalus shunts in vitro.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Neurosurgery; 1998 Feb; 42(2):327-33; discussion 333-4. PubMed ID: 9482183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro performance of six combinations of adjustable differential pressure valves and fixed anti-siphon devices with and without vertical motion.
    Fiss I; Röhrig P; Hore N; von der Brelie C; Bettag C; Freimann FB; Thomale UW; Rohde V; Brandner S
    Acta Neurochir (Wien); 2020 Oct; 162(10):2421-2430. PubMed ID: 32779025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of anti-siphon devices-how do they affect CSF dynamics in supine and upright posture?
    Gehlen M; Eklund A; Kurtcuoglu V; Malm J; Schmid Daners M
    Acta Neurochir (Wien); 2017 Aug; 159(8):1389-1397. PubMed ID: 28660395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro performance of the fixed and adjustable gravity-assisted unit with and without motion-evidence of motion-induced flow.
    Kimura T; Schulz M; Shimoji K; Miyajima M; Arai H; Thomale UW
    Acta Neurochir (Wien); 2016 Oct; 158(10):2011-8. PubMed ID: 27553048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Four-year experience with the routine use of the programmable Hakim valve in the management of children with hydrocephalus.
    Rohde V; Mayfrank L; Ramakers VT; Gilsbach JM
    Acta Neurochir (Wien); 1998; 140(11):1127-34. PubMed ID: 9870057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimum position for an anti-siphon device in a cerebrospinal fluid shunt system.
    Tokoro K; Chiba Y
    Neurosurgery; 1991 Oct; 29(4):519-25. PubMed ID: 1658677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Posture related in-vitro characterization of a flow regulated MEMS CSF valve.
    Tachatos N; Chappel E; Dumont-Fillon D; Meboldt M; Daners MS
    Biomed Microdevices; 2020 Feb; 22(1):21. PubMed ID: 32088807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overdrainage and shunt technology. A critical comparison of programmable, hydrostatic and variable-resistance valves and flow-reducing devices.
    Aschoff A; Kremer P; Benesch C; Fruh K; Klank A; Kunze S
    Childs Nerv Syst; 1995 Apr; 11(4):193-202. PubMed ID: 7621479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of programmable shunt valves vs standard valves for communicating hydrocephalus of adults: a retrospective analysis of 407 patients.
    Ringel F; Schramm J; Meyer B
    Surg Neurol; 2005 Jan; 63(1):36-41; discussion 41. PubMed ID: 15639519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Telemetric assessment of intracranial pressure changes consequent to manipulations of the Codman-Medos programmable shunt valve.
    Frim DM; Lathrop D
    Pediatr Neurosurg; 2000 Nov; 33(5):237-242. PubMed ID: 11155059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risks in using siphon-reducing devices in adult patients with normal-pressure hydrocephalus: bench test investigations with Delta valves.
    Hassan M; Higashi S; Yamashita J
    J Neurosurg; 1996 Apr; 84(4):634-41. PubMed ID: 8613856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of antisiphon devices on ventriculoperitoneal shunt drainage dynamics in growing children.
    Tachatos N; Fernandes Dias S; Jehli E; Lübben D; Schuhmann MU; Schmid Daners M
    J Neurosurg Pediatr; 2023 Jul; 32(1):50-59. PubMed ID: 37119102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posture-independent piston valve: a novel valve mechanism that actuates based on intracranial pressure alone.
    Medow JE; Luzzio CC
    J Neurosurg Pediatr; 2012 Jan; 9(1):64-8. PubMed ID: 22208323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Significance of hydrostatic valves in therapy of chronic hydrocephalus].
    Kiefer M; Eymann R; Mascarós V; Walter M; Steudel WI
    Nervenarzt; 2000 Dec; 71(12):975-86. PubMed ID: 11139994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.